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Non-Technical Summary

Research Question
Forecasts of Inflation are a key input in monetary policy decisions. In this context,
we propose a set of time series and causal models to forecast inflation in the short
run. Different channels of monetary policy transmission are implicitly tested since we
include at least two variations of each type of model, depending on which variables
are included.

Contribution
We implement standard vector autoregressions, Bayesian vector autoregressions and
time-varying parameter vector autoregressions, in addition to Phillips curves, to
generate forecasts of monthly inflation. The predictive capacity of these models is
contrasted to a Random Walk benchmark, for every horizon (one- to six-months-
ahead).

Results
The results indicate that no model dominates the others at all horizons. The forecast-
ing performance of the Random Walk and the rest of the models is not statistically
different at very short horizons (one- to two-step-ahead). As we forecast further into
the future (three- to six-step-ahead), univariate and multivariate models outperform
the benchmark in predictive capacity.
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Abstract

In general, central banks are concerned with keeping the inflation rate stable
while also sustaining output close to an efficient level. Under “inflation targeting”,
forecasts of the evolution of the general price level are an essential input for policy
decisions and these are usually released in quarterly “Inflation Reports”. The costs
and benefits of transparency in monetary policy are widely debated, but the need
for a central bank to incorporate forecasts of future inflation is broadly agreed. In
short, forecasting inflation is of foremost importance to households, businesses, and
policymakers. In 2016, the Central Bank of Argentina began announcing and inflation
targeting scheme. In this context, providing the authorities with good estimates of
relevant macroeconomic variables turns out to be crucial to make the pertinent cor-
rections to reach the desired policy goals. This paper develops a group of models to
forecast inflation in Argentina and conducts a comparison of their predictive ability at
different horizons. Our variety of models includes: (i) univariate time series models,
(ii) VARs, Bayesian VARs and Time-Varying Parameter VARs, and (iii) conventional
New Keynesian Phillips Curves including one that incorporates money to evaluate
its information content as a predictor of inflation. We compare the predictive per-
formance of the different methods using the Giacomini-White test over the relevant
horizons for monetary policy decisions.
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1 Introduction

In recent decades, forecasts of relevant macroeconomic variables have been a fun-
damental tool both to Central Banks and the general public. While the monetary
authority needs them as an input for monetary policy decisions, the private sector
also employs these forecasts as input when taking expenditure and investment de-
cisions. In particular, in an inflation targeting scheme, monetary policy should be
guided with a forward-looking perspective considering that transmission mechanisms
take some time to induce an effect in the economy. From this point of view, the mon-
etary authority should guide its decisions in advance of future developments to be
effective.

This paper develops a wide range of models and assesses their forecasting perfor-
mance for different horizons. We implement vector autoregressions (both in frequen-
tist and Bayesian flavors), time-varying parameters vector autoregressions, and a
hybrid New Keynesian Philips curve. We use different variables in each model to
account for the many possible causes of inflation and the transmission mechanisms
that take place in a complex economy. So, we arrive at 14 models and compare
their performance to a benchmark Random Walk. For this purpose, we evaluate
the models according to a standard measure, the Root Mean Square Forecast Error
(RMSFE) and compare the predictive ability with the standard testing methodology.
We find that for short term horizons, no models are statistically different from the
benchmark. In contrast, for further horizons, this is reversed.

The remainder of the paper is organized as follows. The next section describes each
of the models and variables used in the paper. Section 3 presents the results in
relation to the predictive power of the models, and finally, section 4 concludes.

2 Forecasting Models and Dataset

2.1 Models

Each type of forecasting model has its own advantages and caveats. On the one hand,
it is reasonable to argue that univariate time series models cannot capture the dy-
namic interactions among the different macroeconomic variables that could be jointly
driven by different shocks. On the other hand, the literature related to forecasting
inflation has found that smaller, parsimonious and univariate models, in particular,
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the Random Walk, usually outperform or at least match more sophisticated mod-
els (Atkeson & Ohanian, 2001; Faust & Wright, 2009; Duncan & Martínez-García,
2018). We consider both univariate and multivariate models. In this subsection we
briefly describe the structure and main characteristics of the models employed.

2.1.1 Random Walk (RW)

The first model employed is the Random Walk:

πt = πt−1 + ut. (1)

This specification considers πt−1 as the forecast for πt+h for h = 1, . . . , 6. We chose
this as the benchmark due to its simplicity and good predictive power according to
the literature.

2.1.2 Vector Autoregression (VAR)

Moving on to multivariate models, the VAR consists in a linear system of equations.
This type of model became popular since the Sims’ critique (Sims, 1980) as a simple
and flexible alternative to large scale econometric models. Each variable of the system
is represented as a function of its own lags and lags of the rest of the variables. This
assumes that the endogenous variables are treated symmetrically and that there is a
feedback effect between them. An unrestricted VAR of order p can be expressed in
reduced form:

yt = ν +A1yt−1 + . . .+Apyt−p + ut, (2)

where yt is a n× 1 vector of endogenous random variables; ν is a fixed n× 1 vector
of intercept terms allowing for the possibility of a nonzero mean; A1 to Ap are n×n
coefficient matrices; and ut ∼ N (0,Σ) is a n× 1 vector of serially uncorrelated ex-
ogenous shocks with constant covariance matrix Σ of size n×n (all of whose elements
are time independent). This last assumption implies a white-noise or innovation pro-
cess, that is, E[ut] = 0, where E[utu

′
t] = Σ and E[utu

′
s] = 0 for s 6= t. D’Amato,

Garegnani, & Blanco (2008), for example, test a bivariate monetary VAR to forecast
headline inflation in Argentina.

3



2.1.3 Bayesian Vector Autoregression (BVAR)

One weakness of standard VARs is that the dense number of parameters to estimate
increases exponentially as the number of variables increases; and hence, the finite
sample estimates become less accurate with higher variances, resulting in unstable
inference and less accurate forecasts. Litterman (1986) among others proposed to
rethink standard VARs and combine the likelihood function (the data) with some
informative prior distributions (the researcher’s belief about the values of coefficients)
to improve the forecasting performance, introducing a Bayesian approach into VAR
modeling. The coefficients of the BVAR result in a weighted average of the prior
mean (researcher’s belief) and the maximum likelihood estimators (inferred from
the data) where the inverse covariance of the prior and the maximum likelihood
estimators are the respective weights. In this paper we follow this strategy.

The (conditional) posterior distribution of the coefficients of the BVAR is then

β|Ω ∼ N (β0,Ω
−1ξ), (3)

where β ≡ vec(B) and B ≡ [ν ′A′
1 . . .A

′
p]

′, the vector β0 is the prior mean, the matrix
Ω is the known variance of the prior and ξ is a scalar parameter controlling the
tightness of the prior information. Even though Ω could have many shapes, Gamma
and Wishart distributions are frequently used in the literature, since they ensure a
normally distributed posterior. The conditional posterior of β can be obtained by
multiplying the prior by the likelihood function. So, if the information contained
in the data is good enough to describe the process behind it, the posterior will
move towards the maximum likelihood estimates. There is plenty of literature on
applications of these models. Some examples include Giannone, Lenza, Momferatou,
& Onorante (2014); Giannone, Lenza, & Primiceri (2015) and Mandalinci (2017). An
application for Argentina can be found in Garegnani & Gómez Aguirre (2018).

2.1.4 Time-Varying Parameter Vector Autoregression (TVP-VAR)

Another extension of the standard VAR is to allow for time-varying coefficients. The
time-varying parameter model implies that the underlying structure of the model
evolves over time, while maintaining that such changes in the dynamic behavior
should occur smoothly.

The TVP-VAR can be expressed in the following form:

yt = νt +A1,tyt−1 + . . .+Ap,tyt−p + ut, (4)
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where ut ∼ N (0,Σ). If we define Xt = In ⊗ [1,y′
t−1, . . . ,y

′
t−p] and βt = vec(Bt), we

can rewrite the system as:
yt = Xtβt + ut. (5)

The parameters βt are assumed to evolve as a Random Walk

βt = βt−1 +wt (6)

where wt ∼ N (0,Q) and the initial conditions for βt are treated as parameters. We
formulate the simplifying assumption that the covariance matrix Q is diagonal, i.e.,
Q = diag(q1, . . . , qkn). The model specification1 is fulfilled with independent priors
for Σ, β0 and the diagonal elements of Q:

Σ ∼ W−1(ν0,S0) β0 ∼ N (0,Σ) qi ∼ G−1(ν0,qi , s0,qi)

To estimate the TVP-VAR, we employed an MCMC approach similar to Koop &
Korobilis (2013). Barnett, Mumtaz, & Theodoridis (2014) show an application of
these TVP-VARs to forecast inflation.

2.1.5 Phillips Curve

Another model that we employ is the Phillips curve (PC). In the hybrid version
proposed by Galí & Gertler (1999), the inflation rate is assumed to follow the pro-
cess:

πt = φπt−1 + (1− φ)Et[πt+1] + δmct + ut (7)

where πt is the inflation rate at time t, Et[πt+1] is the expectation of inflation of the
next period at time t, mct is the “marginal cost” and ut is a random shock. The
assumption that 0 < φ < 1 implies a vertical Phillips curve in the long-run.

We adapted the specification of Galí and Gertler to the case of a small open economy.
As pointed out by Svensson (2000), changes in the nominal exchange rate and foreign
prices have a direct effect on domestic inflation. In addition, since the nominal
exchange rate is in essence the price of an asset, it is inherently a forward-looking
variable. Thus, as a determinant of domestic inflation it influences expectations and
domestic price formation.

We estimate an open economy version of the “Hybrid New Keynesian Phillips Curve”
that modifies the previous equation in two directions: (i) introducing measures of

1All the multivariate model specifications include only one lag of each variable.
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nominal devaluation and foreign inflation and (ii) using a measure of the output gap
as a proxy for marginal costs rather than the labor income share. Thus, the final
model is:

πt = φ1πt−1 + φ2Et[πt+1] + γπ∗
t + λ∆et + δxt + ut, (8)

where πt is domestic inflation, measured by the change in the logarithm of the price
index; Et[πt+1] is inflation expectation for t + 1 at time t; π∗

t is foreign inflation,
measured by the change in the log of the US Producer Price Index; ∆et is the nominal
devaluation computed as the log difference of the nominal ARS-USD exchange rate
and xt is the output gap.

We then consider that a relevant empirical question beyond the ongoing debate on
the role of money in monetary policy is whether money can contribute to forecast
inflation and if so, at which frequency. We evaluate the information content of
money by introducing a “real” money gap into the previous Phillips curve model.
This additional variable is defined as the difference between the actual real money
stock and its long-run equilibrium,

mgap
t = mt −m∗

t , (9)

where m∗
t is the level of real money balances that is consistent with both, potential

output and the long-run equilibrium interest rate. When introduced into the Phillips
curve equation, the real money gap is a measure of demand pressures and can be
considered as an indicator of the real monetary overhang.

Under rational expectations, economic agents are supposed to use current and past
information efficiently. In terms of equation (8) this implies that the error in fore-
casting future inflation is uncorrelated with the information set zt available at date
t. The following moment conditions needs to hold,

E[(πt − φ1πt−1 − φ2Et[πt+1]− γπ∗
t − λ∆et + δxt)zt] = 0, (10)

where zt is a vector of variables (instruments) dated at t and earlier. A natural way
to deal with the estimation of the Phillips curve is to use the Generalized Method
of Moments (GMM) developed by Hansen (1982), which is a generalization of the
method of moments. The model with the money gap is also estimated with the GMM
methodology.2 There is a wide economic literature that employs Phillips curves to
forecast inflation. We can mention, for example, the extensive work of Stock &
Watson (1999) and Faust & Wright (2009) for the US economy, and an application
for Argentina in D’Amato et al. (2008).

2For a detailed description of GMM estimation see D’Amato & Garegnani (2009).
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Forecasting with Phillips curves implies the use of inflation expectations that are not
available at the time the forecasts are made. To circumvent this problem, we use the
forecasts of the Random Walk as a proxy of inflation expectations for all forecast
horizons.

2.2 Variables and Dataset

This section describes the variables included in all the models. The dataset was
constructed using many sources and starts in January 2004 and ends in May 2018.
The following list describes all the variables in the dataset:

• CPIX: A price index constructed combining the index the National Institute of Statistics
and Census of Argentina (INDEC) and the Price Index of the City of Buenos Aires. This
index excludes seasonal and regulated prices.

• NEER: Multilateral Nominal Exchange Rate Index. Is is constructed by the Central Bank
of Argentina.

• EMAE: Estimador Mensual de Actividad Económica (EMAE). A Monthly Economic Ac-
tivity Indicator published by the INDEC. This variable tries to replicate quarterly GDP but
at a monthly frequency.

• Interest Rate: 30 to 59-day fixed term deposit rates. The source is the Central Bank of
Argentina (BCRA).

• Wages: Mean wage of Registered Private Sector workers. The source is the Ministry of
Labor, Employment and Social Security of Argentina.

• Reg. Prices: A price index of regulated prices. This index is composed of public utility
services (electricity, natural gas and running water of households).

• ARS-USD ER: It indicates the nominal exchange rate peso-dollar. The source is the
Central Bank of Argentina.

• US PPI: Producer Price Index of the US. The source is the Federal Reserve Bank of St.
Louis.

• Output Gap: The gap between real GDP and the potential output of Argentina. The
estimation methodology is based on a multivariate filter based on Beneš, Clinton, García-
Saltos, Johnson, Laxton, Manchev, & Matheson (2010).

• Monetary Gap: The difference between the actual real money stock and its long-run equi-
librium. The long-run equilibrium money stock is the level of real money that is consistent
with both, the observed output and the nominal interest rate long-run equilibrium levels.
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Table 1: Variables Included in Each Model

CPIX NEER EMAE Int. Rate Wages Reg. Prices ARS-USD ER US PPI Output Gap Monetary Gap

VAR-1 X X X X
VAR-2 X X X
VAR-3 X X X X X
VAR-4 X X X X

BVAR-1 X X X X
BVAR-2 X X X
BVAR-3 X X X X X
BVAR-4 X X X X

TVP-VAR-1 X X X X
TVP-VAR-2 X X X
TVP-VAR-3 X X X X X
TVP-VAR-4 X X X X

PC-1 X X X X
PC-2 X X X X X

RW X

Notes: The hyperparameters of the BVARs can be found in the appendix.
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2.2.1 Comparison Strategy

We first estimated the models presented so far with a rolling window of 88 obser-
vations. The evaluation period we considered goes from January 2012 to December
2017. We computed the root mean square forecast error (RMSFE) for one-, three-
and six-step-ahead point forecasts with the formula below

RMSFEm,h =

√√√√ 1

N

N∑
t=1

(ŷm,t+h − yt+h)2 (11)

where m = 1, . . . , 14 are the models, and h = 1, . . . , 6 are the forecast horizons, N is
the evaluation sample size, ŷm,t+h is the forecast and yt+h is the observed value. Then
we compared the RMSFE of each model relative to the benchmark and tested their
predictive ability with the methodology of Giacomini & White (2006). This requires
the computation of the difference of the times series of squared losses of the model
under evaluation and the benchmark for each desired forecast horizon, ∆Lt+h(θ̂),
where θ̂ contains all the estimated parameters, assuming a rolling window sample
of estimation. This series is then modeled and a standard Wald test is conducted
on the coefficients to determine the difference in forecast accuracy between the two
competing models. The unconditional version of the test assumes that the series is
constant, and thus

∆Lt+h(θ̂) = µ+ ut. (12)

Standard errors may be computed using the Newey-West covariance estimator, con-
trolling for heteroskedasticity and autocorrelation. The Giacomini-White test has
many advantages: i) it captures the effect of estimation uncertainty on relative fore-
cast performance, ii) it allows for comparison between either nested or non-nested
models, and finally, iii) it is relatively easy to calculate.
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3 Results

Here we present three plots of observed inflation in addition to one-, three- and
six-step-ahead forecasts.
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(a) Evolution of Observed Inflation and One-Step-Ahead Forecasts
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(b) Evolution of Observed Inflation and Three-Step-Ahead Forecasts

We can observe that as the forecast horizon goes further into the future, the perfor-
mance of the models tends to deteriorate.
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(c) Evolution of Observed Inflation and Six-Step-Ahead Forecasts

Table 2 reports out-of-sample RMFSE of alternative h-step-ahead forecasts of in-
flation, all relative to the benchmark Random Walk. A relative RMSFE below 1
indicates better performance than the benchmark. The cases in which deviations in
RMSFE are significantly different from zero at 10%, 5% and 1% significance levels
are denoted with one, two and three asterisks (∗), respectively. These are based on
the aforementioned Giacomini-White test, described earlier in the paper.

Results of Table 2 show that in 72 out of 84 ratios the RMSFE are less than 1, which
could indicate that causal and multivariate models outperform in forecasting capacity
the benchmark. Using the Giacomini-White test we find that the differences in fore-
casting performance of the Random Walk and the rest of the forecasting models are
not significant (at 1%, 5% and 10%) for one- and two-step-ahead horizons. However,
when the differences in predictive capacity are evaluated for three- to six-step-ahead
forecast horizons, in 23 out of 56 of the cases, these are significant at traditional
levels. Only in two of the cases of significant differences in predictive performance,
the benchmark outperforms the TVP-VAR for three- and six-step-ahead horizons.
In the other 21 cases the causal and multivariate models present better forecast ca-
pacity than the benchmark. We want to emphasize that 9 of these 21 significant
differences in favor of causal and multivariate forecasting models correspond to the
six-step-ahead forecast horizon.

The results indicate that when the forecast horizon grows, the causal and multivariate
models tend to outperform the benchmark. Taking a look into the subset of 21
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Table 2: Out-of-Sample Predictive Performance, RMSFE Ratios

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

VAR-1 0.941 0.893 0.831∗ 0.800∗ 0.842 0.791∗

VAR-2 0.920 0.895 0.836∗ 0.806∗ 0.841 0.791∗

VAR-3 0.946 0.927 0.867 0.833 0.876 0.831

VAR-4 0.927 0.920 0.860 0.819 0.853 0.801∗

BVAR-1 0.975 0.988 0.958∗ 0.971∗ 1.016 0.992∗

BVAR-2 0.970 0.941 0.866 0.819 0.864 0.800∗

BVAR-3 0.931 0.896 0.838 0.802 0.850 0.793∗

BVAR-4 0.961 0.930 0.857 0.810 0.856 0.794∗

TVP-VAR-1 0.975 0.988 0.958 0.971 1.016 0.992

TVP-VAR-2 0.976 0.981 0.961 0.961 0.971 0.968

TVP-VAR-3 0.984 1.017 1.013 1.014 1.075 1.009

TVP-VAR-4 0.986 1.031 0.996 0.984 1.058 1.029

PC-1 1.056 0.982 0.929 0.849∗∗ 0.836∗∗∗ 0.857∗∗∗

PC-2 1.006 0.978 0.929∗ 0.873∗∗ 0.835∗∗∗ 0.848∗∗∗
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significant differences, 7 corresponds to VARs, 7 to Phillips curves, 6 to BVARs y 1
to a TVP-VAR. Particularly, forecasts from Phillips curves are quite different (1%
significance level) from the ones of the Random Walk for five- and six-step-ahead
forecast horizons.

If we want to make a difference among the transmission mechanism that generate
better forecasting performance, 8 of the cases are in line with financial mechanisms
(VAR-1 and VAR-3) and the other 13 are connected with the cost-push channel of
monetary policy (VAR-2, VAR-4, PC-1 and PC-2). We also find that the inclusion
of regulated prices as an exogenous variable in the VAR models does not make any
difference in predictive performance relative to the benchmark.

4 Conclusions

We conducted an exercise to forecast inflation in Argentina using a wide set of
models that includes a Random Walk as a benchmark, various VARs, BVARs and
TVP-VARs, as well as two versions of the Phillips curve. We then compared the
relative predictive accuracy of those forecasts using the Giacomini-White test. The
results indicate that no model dominates the others at all horizons. The forecasting
performance of the Random Walk and the rest of the models is not statistically dif-
ferent at very short horizons (one- to two-step-ahead). As we forecast further into
the future (three- to six-step-ahead), univariate and multivariate models outperform
the benchmark in predictive capacity. In particular, forecasts from Phillips curves,
are significantly better, at the 1% level, for five- and six-month-ahead forecast hori-
zons. Finally, it should also be noted that these models could complement each
other when conducting inflation forecasts, in the sense that they make it possible
to answer different questions and guide policy decisions. In this regard, exploring
forecast combinations could be relevant for future research.
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Appendix: Specification for BVARs

We followed the strategy suggested by Bańbura, Giannone, & Reichlin (2010); Car-
riero, Clark, & Marcellino (2015) and Giannone et al. (2015) to select the hyperpa-
rameters and the lag length of the BVARs. Suppose that a model is described by
a likelihood function p(y|θ) and a prior distribution pγ(θ), where θ is the vector of
parameters of the model and γ is a vector of hyperparameters affecting the distribu-
tion of all the priors of the model; then it is natural to choose these hyperparameters
by interpreting the model as a hierarchical one, i.e. replacing pγ(θ) with p(θ|γ) and
evaluating their posterior (Berger, 1985; Koop, 2003). In this way, the posterior can
be obtained by applying Bayes’ law

p(γ|y) ≈ p(y|γ)p(γ), (13)

where p(γ) is the density of the hyperparameters and p(y|γ) is the marginal likeli-
hood. In turn, the marginal likelihood is the density that comes from the data when
the hyperparameters change. In other words, the marginal likelihood can be obtained
after integrating out the uncertainty about the parameters in the model,

p(γ|y) =
∫

p(y|θ,γ)p(θ|γ)dθ. (14)

For every conjugate prior, the density p(γ|y) can be computed in closed form. To
obtain the Bayesian hierarchical structure, it is necessary to obtain the distribution
of p(θ) by integrating out the hyperparameters

p(θ) =

∫
p(θ,γ)p(γ)dγ. (15)

More precisely, we can find different values of the prior distribution from different
hyperparameter values, and, in this way, we can represent the posterior as:

p(θ,γ|y) = p(y|θ,γ)p(θ,γ)p(γ). (16)

The marginal likelihood should be sufficient to discriminate among models. In this
sense, we can choose models with different hyperparameters and different likelihood
specifications (more precisely, lag length structure). To make this point operational,
we estimate different models, following Giannone et al. (2015) who introduce a pro-
cedure allowing to find the values of the hyperparameters that maximize the value of
the marginal likelihood of the model. This implies that the hyperparameter values
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are not set a priori but are estimated. Then the marginal likelihood can be estimated
for every combination of hyperparameter values within specified ranges and for dif-
ferent lag length structures, and the optimal combination is retained as the one that
maximizes that value.

We work with a Normal-Wishart BVAR specification. In this type of specification
there are two hyperparameters and two parameters. We estimate the overall tightness
λ1, lag decay λ3 and the lag length as described below, and then we impose the value
of the prior mean (the autoregressive coefficient) equal to zero.

The hyperparameter of the overall tightness λ1 is the standard deviation of the prior
of all the coefficients in the system different from the constant. In other words, it
determines how all the coefficients are concentrated around their prior means.

The term λ3 is a decay factor, and 1/(Lλ3) controls the tightness on lag “L” relative
to the first lag. Since the coefficients of higher order lags are more likely to be
close to zero than those of lower order lags, the prior for the standard deviations of
the coefficients decrease as the lag length increases. The values usually used in the
literature are 1 or 2, but in our case, we settle for λ3 = λ2 = 0.

The prior variance of the parameters of β̂(ξ) is set according to:

σ2
ij =

(
1

σ2
j

)(
λ1

Lλ3

)2

(17)

where σ2
j denotes OLS residual variance of the autoregressive coefficient for variable

“j”. For exogenous variables, we define variances as σ2
x = (λ1λ4)

2.

The characteristics of the hyperparameters after the optimization and prior means
of the BVAR-1, BVAR-2, BVAR-3 and BVAR-4 models are shown in the next table:

Table 3: List of Hyperparameter Values

BVAR-1 BVAR-2 BVAR-3 BVAR-4

Autoregressive Coefficient 0.50 0.30 0.40 0.30

Overall Tightness (λ1) 0.05 0.21 0.07 0.17

Lag Length 1 1 1 1
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