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A DSGE model for a SOE with Systematic Interest and Foreign Exchange
policies in which policymakers exploit the risk premium for stabilization
purposes1
Guillermo J. Escudé
Central Bank of Argentina
Abstract: This paper builds a DSGE model for a SOE in which the central bank
systematically intervenes both the domestic currency bond and the FX markets
using two policy rules: a Taylor-type rule and a second rule in which the operational
target is the rate of nominal currency depreciation. For this, the instruments used
by the central bank (bonds and international reserves) must be included in the
model, as well as the institutional arrangements that determine the total amount
of resources the central bank can use. The �corner�regimes in which only one of
the policy rules is used are particular cases of the model. The model is calibrated
and implemented in Dynare for 1) simple policy rules, 2) optimal simple policy
rules, and 3) optimal policy under commitment. Numerical losses are obtained for
ad-hoc loss functions for di¤erent sets of central bank preferences (styles). The
results show that the losses are systematically lower when both policy rules are used
simultaneously, and much lower for the usual preferences (in which only in�ation
and/or output stabilization matter). It is shown that this result is basically due to
the central bank�s enhanced ability, when it uses the two policy rules, to in�uence
capital �ows through the e¤ects of its actions on the endogenous risk premium in
the (risk-adjusted) interest parity equation.
JEL classi�cation: E58, F41, O24
Keywords: DSGE models, Small Open Economy, Exchange rate policy, Optimal

policy

1The views expressed in this paper are the author�s and do not necessarily re�ect those of
the Central Bank of Argentina. A previous version was presented to the 7th Dynare Conference
at the Federal Reserve Bank of Atlanta, September 9-10, 2011, under the title "Optimal (and
simultaneous) Interest and Foreign Exchange feedback policies in a DSGE model for a small open
economy". Comments and suggestions by Horacio Aguirre to a previous version of this paper are
gratefully acknowledged.
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1. Introduction
According to John Williamson �the overwhelming conventional view in the pro-
fession is that it is a mistake to try to manage exchange rates� (J. Williamson
(2007)), although he does not subscribe this view. After having for a long time
recommended a basket, band, and crawl (BBC) regime, Williamson lately confesses
to have converted to the cause of in�ation targeting, but with some signi�cant ad-
ditional ingredients: �most of the time the only monetary policy objective that may
merit consideration -other than in�ation targeting- is the maintenance of a su¢ -
ciently competitive exchange rate to preserve the incentive to invest�... (in tradable
sectors). He also argues that �the government can expect to reduce misalignments
by a policy of intervention. The question is how those interventions should be
structured: whether they should be ad-hoc or systematic and, if the latter, how
the system should be designed.� This paper attempts to deal with these issues in
a novel way, integrating the usual �in�ation targeting�(or Taylor rule) approach
with a policy of systematic intervention in the foreign exchange market.
In my view there is no justi�cation for having to choose between an in�ation

target anchor and an exchange rate target anchor. But it is by no means easy
to escape this dichotomy in the absence of an accepted and adequate theoretical
framework. My hunch is that this absence is due to the pervasive preference of
modelers (theoreticians) to �sweep under the rug�some of the Central Bank �nuts
and bolts�that are necessary to achieve a more general theory. Such �nuts and bolts�
as the Central Bank balance sheet (and the �nancial assets and liabilities within
it), are detailed and analyzed in any IMF Article IV mission report pertaining
to developing countries. However, when it comes to modeling the macroeconomy.
such aspects are simply omitted in both academic and IMF models. What makes
such an omission possible, of course, is that if we accept the dichotomy in question,
an argument of system decomposability allows one to focus on the central block of
equations. However, if we do not accept the dichotomy, the need to include such
�nuts and bolts�arises merely to ensure a consistent policy model.
This paper, and the model on which it is based, attempts to build such a

consistent policy model. Using the model with various policy frameworks (simple
policy rules, optimal simple policy rules, optimal policy under commitment) and
implementing a �rst order approximation using Dynare, I �nd strong evidence
that a proper systematic use by Central Banks (CBs) of small open economies
(SOEs) of two policy rules, one for the nominal interest rate and another for the
rate of nominal depreciation, outperforms the �corner�regimes of in�ation targeting
(�oating exchange rate) and an exchange rate peg. The basic di¤erence between the
model used here and the workhorse DSGE model of the profession is the inclusion
of more detail in the modeling of the institutional structure that takes us closer to
a formal representation of how most CBs (at least those in developing economies)
implement their interest and foreign exchange policies. However, as far as I am
aware no CB implements its FX policy the way that it is modeled in this paper.
When FX policy is systematic, there tends to be an exchange rate-related target.
And when there is an explicit in�ation targeting framework, FX policy tends to
be highly discretional. One of the conclusions of this paper is that it is perfectly
possible to articulate a consistent model which conserves the systematic interest
rate policy rule that prevails in the literature (Taylor rule models) yet incorporates
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an additional policy rule to represent FX policy. Furthermore, the paper shows
that when optimal simple rules or optimal policy under commitment are introduced
through an ad-hoc CB loss function, signi�cant gains are obtained using two policy
rules (or two control variables) for all the usual CB preferences (i.e. combinations
of weights for in�ation and output).
The model used for this paper, ARGEMmin (a smaller version of two previous

models: Escudé (2008) and Escudé (2009)), can represent the simultaneous (i.e.
within the same quarterly period) intervention in the foreign exchange (FX) and
the domestic currency bond markets. The simultaneous use of two policy rules is
a generalization of standard models that are limited to having either a Taylor rule
for the interest rate with a pure currency �oat or a pure pegged regime in which
there is usually no feedback. The fact that most CBs of developing economies
intervene regularly in both markets should make this generalization of practical
interest.2 And a model that only adds the essential features that are needed to
include foreign exchange policy without excluding interest rate policy should help
in obtaining intuition as to why the CB can better achieve its objectives, whatever
they may be, by the use of two policy rules instead of one. It is shown that the
gains the CB obtains using the two instruments are basically due its increased
ability to exploit the foreign investors�risk premium function that constrains the
domestic household�s optimal foreign debt decision.
The household decision problem delivers the risk-adjusted uncovered interest

parity (UIP) equation.3 The use of an endogenous risk premium function that
Rest of the World (RW) agents use to determine the interest rate at which they
are willing to purchase the economy�s foreign currency bonds plays a fundamental
role in the model�s dynamics of capital �ows. The use of a risk premium for foreign
debt has a long history in open economy macroeconomics (see e.g. Bhandari, Ul
Haque and Turnovsky (1990)). In the DSGE strand, Schmitt-Grohé and Uribe
(2003) note that the simplest SOE models with incomplete asset markets use the
assumption that the subjective discount rate equals the average real interest rate
and, hence, present equilibrium dynamics that have a random walk component.
They present �ve alternative modi�cations that have been used to eliminate this
random walk component and show that they have quite similar dynamics. Among
these modi�cations is the complete assets market model (i.e., doing away with
the incomplete asset markets assumption altogether) and, more relevant for this
paper, the use of a risk premium function by which the interest rate on foreign funds
responds to the amount of debt outstanding. In the latter variant, combining the
non-stochastic steady state (NSS) versions of the Euler and UIP equations gives

2IMF (2011), for example, notes that �on average about on-third of the countries in the
region (Latin America) intervened in any given day�. Indeed, their Table 3.1 (Stylized facts of
FX Purchases, 2004-10) shows that Colombia and Peru intervened in 32% and 39% of working
days, respectively. This table also contains interesting information on other regions: in the same
period, Australia and Turkey intervened in 62% and 66% of working days, respectively, while
Israel intervened 24% of working days but with a cumulative intervention that represented 22.3%
of GDP.

3This di¤ers from my two previous (and larger) models, where it was the decision of banks
that delivered the model�s UIP equation. The simpli�cation in this paper seeks to obtain a model
that is su¢ ciently close to the standard workhorse model that the speci�c di¤erence in modeling
policy is highlighted.
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an equation such as � (1 + i�)'D (d) = �, where � is the intertemporal discount
factor, i� is the RW�s NSS real interest rate, � is the SOE�s in�ation rate, d is
the SOE�s foreign debt and 'D(:) is a risk premium function. This equation then
determines d as a function of model parameters (including those that de�ne the risk
premium function 'D (:) and the policy target that de�nes �). Lubik (2007) adds
that even if there is an exogenous risk premium function, to avoid the unit root
problem it is necessary that it be fully internalized by the individual households,
i.e., that each household take into account that other households�decisions are the
same as its own and, hence, that the risk premium it faces is a function of the
aggregate (and not its individual) foreign debt. The only signi�cant change that
this paper presents with respect to such a risk premium is that 'D (:) is a function
of the foreign debt to GDP ratio: ed=Y (where e is the SOE�s real exchange rate
(RER) and Y is its GDP) and that there is an additional multiplicative shock ��

(giving ��'D (:)) that may represent either an exogenous component of the risk
function or an international liquidity shock (or both).4

Simply for convenience, I call the policy framework where the CB uses two
simultaneous policy rules a Managed Exchange Rate (MER) regime. I explicitly
include the instruments that the CB uses for its intervention in the two markets as
well as the CB balance sheet that binds them. Hence, the CB balance sheet is one of
the model equations. It has cash mt and CB-issued domestic currency bonds bt on
the liabilities side, and foreign currency reserves rt on the asset side. To make sure
that there are no loose ends, I explicitly consider the CB�s �ow budget constraint
and assume that the institutional framework is such that any �quasi-�scal�surplus
(or de�cit) is handed over (�nanced) period by period to the Treasury, de�ning
�quasi-�scal surplus�as �nancial �ows (speci�cally, those related to interest earned
and capital gains on international reserves, and the interest paid on CB bonds) that
could make the CB net worth di¤erent from zero. Hence, while there is overall �scal
consistency (since the Treasury is assumed to be able to collect enough lump-sum
taxes each period to �nance its expenditures in excess of the qusi-�scal surplus), the
CB has a constraint each period on its two instruments (rt and bt): etrt = mt+ bt,
where et andmt are the real exchange rate (RER) and real cash held by households.
This equation implicitly de�nes how much the CB �sterilizes�(through the issuance
of domestic currency bonds) any unwanted monetary e¤ect of its simultaneous
and systematic monetary and exchange policy. However, I avoid the expression
�sterilized intervention�(in the foreign exchange market) because it implicitly gives
the exchange rate policy a subordinate role (the undesired e¤ects of which must be
�sterilized�to avoid disrupting the monetary equilibrium that is achieved through
the use of conventional monetary policy). Generality is best preserved treating
both interventions in a symmetrical way, neither of which �sterilizes� the e¤ects
of the other. When the CB intervenes in both the money and foreign exchange
market, it is subject to the set of constraints given by the equations of the model,
among which is monetary equilibrium and the assumed institutional constraint

4In addition to ��, there are three more RW shocks that impinge on the SOE: the world
nominal riskfree interest rate 1 + i� and the rates of in�ation of imported and exported goods.
There are also two domestic shocks: a transitory productivity shock in the domestic output sector
and a government expenditure ratio (to GDP) shock.



5

that the CB�s net worth is kept at zero.5 Clearly, other similar constraints could
be used for the same purpose of endogenizing the CB�s �sterilization�policy. The
one I use has the virtue of simplicity. The important point is that the overall
means that the CB has available be made explicit. To further ensure consistency,
the model includes the balance of payments (where both household foreign debt
and CB reserves play relevant roles) and the �scal equation.
Since the 2008 �nancial meltdown and the consequent introduction of �uncon-

ventional�monetary policies it has become customary to stress the importance of
central bank balance sheets in the sense that huge purchases of �nancial assets
by central banks get re�ected in their assets as well as their liabilities. Caruana
(2012), e.g., stresses the need to start normalizing the situation before the risk of
monetizing debts gets out of hand. In this paper the point is made that inclusion
of the central bank balance sheet and its composition is important even in a more
�normal�world with short term interest rates that are above zero and CB assets and
liabilities that are closer to normal levels. In this paper, �normal�levels are given
by the long run (i.e., the model�s nonstochastic steady state) CB foreign exchange
reserves ratio to GDP, and actual CB reserves �uctuate around the corresponding
long run level. Hence, a return to normal levels is automatically guaranteed when-
ever the model is dynamically stable. But the explicit consideration of the CB�s
balance sheet opens the door for modeling the novel (�unconventional�) types of
CB monetary policies in which the CB, say, additionally intervenes in a market for
long-period bonds in order to deepen its expansionary policy when the short run
interest rate is at its zero lower bound. This, however, is for future research.
The rest of the paper has the following structure. In section 2 I set up the

model. In section 3 I study the functioning of the model under simple policy
rules, optimal simple policy rules, and optimal policy under commitment and full
information (as in Svensson and Woodford (2002)) and show that there are indeed
gains from using these two simultaneous policy rules instead of only one of the
�corner� regimes. In section 4 I show that such gains are basically due to the
central bank�s enhanced ability to in�uence the risk premium in the UIP equation
when it uses the two policy rules. Section 5 concludes. Appendix I shows how the
model parameters and the NSS were jointly calibrated. Finally, Appendix 2 shows
a selection of the impulse response functions for the optimal simple rules and the
optimal policy under commitment.

2. The model
2.1. Households
2.1.1 The household optimization problem

In�nitely lived identical households consume a CES bundle of domestic and im-
ported goods and hold �nancial wealth in the form of domestic currency cash (Mt)
and domestic currency denominated one period nominal bonds issued by the CB
(Bt) that pay a nominal interest rate it. They also issue one period foreign currency
bonds (Dt) in the international capital market that pay a nominal (foreign cur-

5Notice that the latter can be expressed as an institutional constraint of the CB preserving a
�full backing�of its domestic currency liabilities with (the domestic currency value of) its foreign
reserves.
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rency) interest rate iDt . I assume that the CB fully and credibly insures investors in
CB bonds, so the domestic currency nominal rate is considered riskfree. However,
foreign investors are only willing to hold the SOE�s foreign currency bonds if they
receive a risk premium over the international riskfree rate i�t . Since I do not model
the RW, the premium function is exogenously given. It has an exogenous stochas-
tic and time-varying component ��t (that can represent general liquidity conditions
in the international market) as well as an endogenous (more country risk-related)
component �D(:) that is an increasing convex function of the aggregate foreign
debt to GDP ratio. Individual households are assumed to fully internalize the
dependence of the interest rate they face on the aggregate (instead of individual)
foreign debt based on to their knowledge that all households are (at least in this
aspect) identical. The foreign currency gross interest rate households face is:

1 + iDt = (1 + i
�
t )�

�
t �D

�

Dt
�
; (1)

where


Dt =
StDt

PtYt
=
etdt
Yt
; et �

StP
�
t

Pt
; dt �

Dt

P �t
: (2)


Dt , et, and dt, are the foreign debt to GDP ratio, the real exchange rate, and real
foreign debt (in terms of foreign prices), respectively, St is the nominal exchange
rate, Pt is the domestic goods price index, P �t is the price index of the goods
the SOE imports, and Yt is GDP. I assume that the gross risk premium function
�D
�

Dt
�
is increasing and convex (�D � 1 + �D > 1, � 0D > 0 and � 00D > 0).

The household holds cash Mt because doing so reduces its transaction costs. I
assume that transaction frictions result in a loss of purchasing power (through the
non-utility generating consumption of domestic goods) when households purchase
consumption goods, and that this cost can be ameliorated using cash.6 To purchase
quantity Ct of the consumption bundle, households must spend �M

�

Mt
�
PCt Ct,

where PCt is the price index of the consumption bundle. All price indexes are in
monetary units. The gross transactions cost function �M

�

Mt
�
is assumed to be

a decreasing and convex function (�M � 1 + �M > 1; � 0M < 0; � 00M > 0) of the
cash/consumption ratio 
Mt :


Mt � Mt

PCt Ct
=

mt

pCt Ct
; (3)

where

pCt �
PCt
Pt
; mt �

Mt

Pt
(4)

are the relative price of consumption goods and real cash.
The representative household maximizes an inter-temporal utility function which

is additively separable in (constant relative risk aversion subutility functions of)
goods Ct and labor Nt:

Et

1X
j=0

�j

(
C1��

C

t+j

1� �C � �
NNt+j

1+�N

1 + �N

)
; (5)

6The introduction of money is similar to the theoretical treatment in Montiel (1999), and also
to the numerically implemented treatment in Schmitt-Grohé and Uribe (2004). It di¤ers from
the latter in that instead of de�ning velocity I use its inverse (the cash/consumption ratio), and
I use a di¤erent speci�cation of the transactions cost function.
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where � is the intertemporal discount factor, �C , and �N are the constant relative
risk aversion coe¢ cients for goods and labor, respectively, and �N is a parameter.
The household receives income from pro�ts, wages, and interests, and spends

on consumption, interests, and taxes. Its nominal budget constraint in period t is:

�M
�

Mt
�
PCt Ct +Mt +Bt � StDt = WtNt +�t � Taxt (6)

+Mt�1 + (1 + it�1)Bt�1 � (1 + iDt�1)StDt�1

where it is the interest rate that CB bonds pay each quarter, Wt is the nominal
wage rate, �t is nominal pro�ts, and Taxt is lump sum taxes net of transfers.
Introducing (1) in (6) and dividing by Pt, the real budget constraint is:

�M
�

Mt
�
pCt Ct +mt + bt � etdt = wtNt +

�t
Pt
� taxt +

mt�1

�t
(7)

+(1 + it�1)
bt�1
�t

� (1 + i�t�1)��t�1�D
�

Dt�1

�
et
dt�1
��t
;

where

bt �
Bt
Pt
; wt �

Wt

Pt
; taxt �

Taxt
Pt

; �t �
Pt
Pt�1

; ��t �
P �t
P �t�1

are the real stock of domestic currency bonds, the real wage (in terms of domestic
goods), real lump sum tax collection, and the gross rates of quarterly in�ation for
domestic goods and foreign goods, respectively.
The household chooses the sequence fCt+j;mt+j; bt+j; dt+j; Nt+jg that maxi-

mizes (5) subject to its sequence of budget constraints (7) (and initial values for
the predetermined variables). The Lagrangian is hence:

Et

1X
j=0

�j

(
C1��

C

t+j

1� �C � �
NNt+j

1+�N

1 + �N
+ �t+j

�
wt+jNt+j +

�t+j
Pt+j

+
mt�1+j

�t+j
(8)

+(1 + it�1+j)
bt�1+j
�t+j

� (1 + i�t�1+j)��t�1+j�D
�
et�1+jdt�1+j
Yt�1+j

�
et+j

dt�1+j
��t+j

��M
�

mt+j

pCt+jCt+j

�
pCt+jCt+j �mt+j � bt+j + et+jdt+j � taxt+j

��
where �j�t+j are the Lagrange multipliers, and can be interpreted as the marginal
utility of real income.7

The �rst order conditions for an optimum are the following:

Ct : C��
C

t = �tp
C
t 'M

�
mt=p

C
t Ct

�
(9)

mt : �t
�
1 + � 0M

�
mt=p

C
t Ct

��
= �Et (�t+1=�t+1) (10)

bt : �t = � (1 + it)Et (�t+1=�t+1) (11)

dt : �tet = �(1 + i
�
t )�

�
t'D (etdt=Yt)Et

�
�t+1et+1=�

�
t+1

�
(12)

Nt : �NN�N

t = �twt (13)

7There is also a no-Ponzi game condition that I omit for simplicity and yields the transversality
condition limt!1 �

tdt = 0 that prevents households from incurring in Ponzi games.
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Notice that in (9) and (12) the auxiliary functions 'M and 'D have been introduced
merely to obtain a more compact notation:

'D
�

D
�
� �D

�

D
�
+ 
D� 0D

�

D
�
; (14)

'M
�

M
�
� �M

�

M
�
� 
M� 0M

�

M
�
:

Combining (10) and (11) implicitly gives the demand for cash as a function of
the nominal interest rate and consumption expenditure:

�� 0M
�
mt=p

C
t Ct

�
= 1� 1

1 + it
; (15)

Inverting �� 0M gives the explicit demand function for cash as a vehicle for trans-
actions (or �liquidity preference�function):

mt = L (1 + it) pCt Ct; (16)

where L (:) is de�ned as:

L (1 + it) � (�� 0M)�1
�
1� 1

1 + it

�
; (17)

and is strictly decreasing, since:

L0 (1 + it) =
�
�� 00M(L (1 + it)) (1 + it)

2��1 < 0:
Under the assumption that the Central Bank always satis�es cash demand, from
now on I call (16) the money market clearing condition.
Using (9) to eliminate �t from (11) yields a version of the classical Euler equa-

tion that re�ects the additional in�uence of the use of money on transactions costs:

C��
C

t

'M (mt=pCt Ct)
= � (1 + it)Et

 
C��

C

t+1

'M
�
mt+1=pCt+1Ct+1

� 1

�Ct+1

!
; (18)

where �Ct � PCt =P
C
t�1 is the gross rate of in�ation of the basket of consumption

goods and I have used the identity:

pCt
pCt�1

=
�Ct
�t

(19)

(based on the de�nition of pCt in (4)) to eliminate the rate of in�ation for domestic
goods.
The de�nition of the RER in (2) gives the following identity:

et
et�1

=
�t�

�
t

�t
; (20)

where �t � St=St�1 is the rate of nominal depreciation of the domestic currency.
Hence, (12) may be written as:

1 = �(1 + i�t )�
�
t'D

�
etdt
Yt

�
Et

�
�t+1
�t

�t+1
�t+1

�
:
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Also, multiplying both sides of (11) by �t+1 and applying the expectations operator
gives:

Et�t+1 = � (1 + it)Et

�
�t+1
�t

�t+1
�t+1

�
:

Combining the last two equations yields the risk-adjusted uncovered interest parity
(UIP) equation:

1 + it = (1 + i
�
t )�

�
t'D

�
etdt
Yt

�
Et�t+1: (21)

Finally, eliminating �t from (13) gives the household�s labor supply:

Nt =

�
wt

�NpCt C
�C
t 'M (mt=pCt Ct)

� 1

�N

: (22)

2.1.2 Domestic and imported consumption

The consumption index used in the household optimization problem is a constant
elasticity of substitution (CES) aggregate consumption index of domestic

�
CDt
�

and imported
�
CNt
�
goods:

Ct =

�
aD

1

�C
�
CDt
� �C�1

�C + aN
1

�C
�
CNt
� �C�1

�C

� �C

�C�1
, aD + aN = 1: (23)

�C(� 0) is the elasticity of substitution between domestic and imported goods.
Total consumption expenditure is:

PCt Ct = PtC
D
t + P

N
t C

N
t ; (24)

where PNt is the domestic currency price of imported goods. Then minimization
of (24) subject to (23) for a given Ct, yields the following relations:

Pt = P
C
t

�
CDt
aDCt

�� 1

�C

(25)

PNt = PCt

�
CNt
aNCt

�� 1

�C

: (26)

Introducing these in (23) yields the consumption price index:

PCt =
�
aD (Pt)

1��C + aN
�
PNt
�1��C� 1

1��C
: (27)

Dividing (27) through by Pt yields a relation between the relative prices of con-
sumption and imported goods (both in terms of domestic goods):

pCt =
�
aD + (1� aD)

�
pNt
�1��C� 1

1��C
; (28)

where

pNt �
PNt
Pt
:
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For simplicity, I assume that the Law of One Price holds. Hence, the domestic
price of (the aggregate of) imported goods is simply:

PNt = StP
�
t :

This implies that the domestic relative price of imports is simply the RER:

pNt =
PNt
Pt

=
StP

�
t

Pt
= et: (29)

Hence, the relative price of the consumption bundle (28) is:

pCt =
�
aD + (1� aD) e1��

C

t

� 1

1��C
: (30)

(25) and (26) show that aD and aN = 1� aD in (23) are directly related to the
shares of domestic and imported consumption in total consumption expenditures.
In fact, the shares are:8

CDt
pCt Ct

= aD
1

(pCt )
1��C

(31)

etC
N
t

pCt Ct
= (1� aD)

�
et
pCt

�1��C
(32)

I assume throughout that there is a bias for domestic goods, i.e., aD > 1=2 > aN ,
and that �C > 1.
CDt is a CES aggregate of an in�nite number of domestic varieties of goods,

each produced by a monopolist under monopolistic competition:

CDt =

�Z 1

0

CDt (i)
��1
� di

� �
��1

; � > 1 (33)

where � is the elasticity of substitution between varieties of domestic goods in
household expenditure.
Conditions (25), and (26) are necessary for the optimal allocation of household

expenditures across domestic and imported bundles of goods. Similarly, for the
optimal allocation across varieties of domestic goods within the �rst of these classes,
use of (33) yields the following necessary conditions:

Pt(i) = Pt

�
CDt (i)

CDt

�� 1
�

:

8In the Cobb-Douglas case (�C = 1) the shares are aD and aN = 1� aD (and hence are time
invariant). But in this case the relative demand of domestic to imported goods is independent of
pNt (and hence, the RER), which is something not too desirable. With �C > 1 an increase in the
relative price of imported goods increases the relative demand for domestic goods.
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2.2. Firms
2.2.1 The representative �nal goods �rm

There is perfect competition in the production (or bundling) of �nal domestic
output Qt, with the output of intermediate �rms as inputs. A representative �nal
domestic output �rm uses the following CES technology:

Qt =

�Z 1

0

Qt(i)
��1
� di

� �
��1

; � > 1 (34)

where Qt(i) is the output of the intermediate domestic good i. The �nal domestic
output representative �rm solves the following problem each period:

max
Qt(i)

Pt

�Z 1

0

Qt(i)
��1
� di

� �
��1

�
Z 1

0

Pt(i)Qt(i)di; (35)

the solution of which is the demand for each type of domestic good (as an input):

Qt(i) = Qt

�
Pt(i)

Pt

���
: (36)

Introducing (36) in (34) and simplifying, it is readily seen that the domestic goods
price index is:

Pt =

�Z 1

0

Pt(i)
1��di

� 1
1��

: (37)

Also, introducing (36) into the cost part of (35) yields:Z 1

0

Pt(i)Qt(i)di = PtQt:

2.2.2 The monopolistically competitive �rms

A continuum of monopolistically competitive �rms produce the intermediate do-
mestic goods (that the �nal goods producer bundles) using homogenous labor, with
no entry or exit. The production function of each �rm is:

Qt(i) = �tNt(i) (38)

where �t is an industry-wide transitory productivity shock.
Since Nt(i) is �rm i�s labor demand, using (38) and (36) and integrating yields

aggregate labor demand:

ND
t =

1Z
0

Nt(i)di =

1Z
0

Qt(i)

�t
di =

1

�t

1Z
0

Qt

�
Pt(i)

Pt

���
di =

Qt
�t
�t (39)

where (as in Schmitt-Grohé and Uribe (2004) and (2007)) I de�ned a measure of
price dispersion at period t:

�t �
1Z
0

�
Pt(i)

Pt

���
di � 1:
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Notice that �t = 1 when all prices are the same and �t > 1 otherwise.9

Equating labor supply (22) and demand (39) gives the labor market equilibrium
real wage (in terms of domestic goods):

wt = �
N

�
Qt
�t
�t

��N
pCt C

�C

t 'M
�
mt=p

C
t Ct

�
(40)

Each �rm�s cost is WtNt(i) = (Wt=�t)Qt(i). Hence, its marginal cost is Wt=�t
and its real marginal cost (in terms of domestic goods) is:

mct =
wt
�t
: (41)

Notice that all �rms face the same marginal cost. Also, (40) shows that increases in
price dispersion raise the equilibrium real wage and hence the real marginal cost of
�rms. This is due to the positive e¤ect of increased price dispersion on aggregate
labor demand (see (39)) and, given the level of supply, on the equilibrium real
wage. Furthermore, tighter monetary conditions increase marginal cost because an
increase in it makes households economize on cash (see (16)), lowering mt=p

C
t Ct.

Because '0M = �
M� 00M < 0, this has a positive e¤ect on 'M , lowering labor supply
(see (22)) and hence increasing the equilibrium real wage.

2.2.3 The dynamics of in�ation and price dispersion

Firms make pricing decisions taking the aggregate price and quantity indexes as
parametric. Every period, each �rm has a probability 1 � � of being able to set
the optimum price for its speci�c type of good. The �rms that can�t optimize must
leave the same price they had last period. The pricing problem of �rms that get
to optimize is:

max
Pt(i)

Et

1X
j=0

�j�t;t+jQt+j(i)

�
Pt(i)

Pt+j
�mct+j

�
(42)

subject to the demand they will face until they can again optimize:

Qt+j(i) = Qt+j

�
Pt(i)

Pt+j

���
: (43)

�t;t+j is the pricing kernel used by domestic �rms for discounting, which, since �rms
are owned by households and respond to their preferences, is equal to households�
intertemporal marginal rate of substitution in the consumption of domestic goods
between periods t+ j and t:

�t;t+j � �j
UCD;t+j
UCD;t

;

where U (Ct+j; Nt+j) is the function within brackets in (5). Notice that the mar-
ginal utility of consuming domestic goods can be obtained from the marginal utility
of consuming the aggregate bundle of (domestic and imported) goods. Speci�cally:

UCD;t = UC;t
dCt
dCDt

= UC;ta
1

�C

D

�
CDt
Ct

�� 1

�C

= C��
C

t

Pt
PCt

=
1

pCt C
�C
t

;

9See Schmitt-Grohé and Uribe (2007).
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where the second equality is obtained by di¤erentiating (23) with respect to CDt ,
and the third comes from using (25). Hence, the pricing kernel of domestic �rms
is:

�t;t+j � �j
pCt C

�C

t

pCt+jC
�C
t+j

: (44)

Introducing (43) and (44) in (42) (and eliminating irrelevant multiplying terms
that refer to time t) gives

max
Pt(i)

Et

1X
j=0

(��)j
Qt+j

pCt+jC
�C
t+j

(�
Pt(i)

Pt+j

�1��
�mct+j

�
Pt(i)

Pt+j

���)
:

Since by symmetry all optimizing �rms make the same decision I call the optimum
price ePt and drop the �rm index. Hence, the �rm�s �rst order condition is the
following:

0 = Et

1X
j=0

(��)j
Qt+j

pCt+jC
�C
t+j

�
Pt+j
Pt

�� �ept Pt
Pt+j

� �

� � 1mct+j
�

(45)

where ept � ePt=Pt is the relative price of �rms that optimize and the general price
level (which includes the prices of both optimizers and non-optimizers). In the
Calvo setup, because optimizers (and hence non-optimizers) are randomly chosen
from the population, the average price in t� 1 of non-optimizers (which must keep
their price constant) is equal to the overall price index in t � 1 no matter when
they optimized for the last time. Hence, (37) implies the following law of motion
for the aggregate domestic goods price index:

P 1��t = � (Pt�1)
1�� + (1� �) eP 1��t : (46)

Dividing through by P 1��t and rearranging yields the relative price of optimizers
as an increasing function of the in�ation rate:

ept = �1� ����1t

1� �

� �1
��1

� ep (�t) : (47)

Hence, using this in (45) gives the (non-linear) Phillips equation that determines
the dynamics of domestic in�ation:

0 = Et

1X
j=0

(��)j
Qt+j

pCt+jC
�C
t+j

�
Pt+j
Pt

�� �ep (�t) Pt
Pt+j

� �

� � 1mct+j
�
: (48)

In order to implement the Phillips equation in Dynare I express this in a recursive
(nonlinear) form. De�ne:

�t = Et

1X
j=0

(��)j
Qt+j

pCt+jC
�C
t+j

�
Pt+j
Pt

���1
(49)

	t =
�

� � 1Et
1X
j=0

(��)j
Qt+j

pCt+jC
�C
t+j

�
Pt+j
Pt

��
mct+j
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and express (48) as: ep (�t) �t = 	t:
Now write �t and 	t recursively as follows:

�t =
�
Qt=p

C
t C

�C

t

�
+ ��Et�

��1
t+1�t+1

	t =
�

� � 1

�
Qt=p

C
t C

�C

t

�
mct + ��Et�

�
t+1	t+1:

Hence, the complicated Phillips equation (with in�nite summations) is transformed
into these three simple nonlinear equations. Notice that collapsing the log-linear
approximations of these equations yields the usual log-linearized Phillips equation:

b�t = (1� ��) (1� �)
�

cmct + �Etb�t+1:
�t is an additional variable in the model, which hence needs an additional

equation. A recursive equation for the dynamics of this variable is now derived
in three steps. First, separate the set of non-optimizing �rms N from the set of
optimizing �rms O and notice that in a given period the latter all set the same
price ePt and have mass 1� �:

�t �
Z
i2N

�
Pt(i)

Pt

���
di+

Z
i2O

�
Pt(i)

Pt

���
di = ��N

t + (1� �)ep��t (50)

where I de�ned the equivalent measure of price dispersion for non-optimizers:

�N
t �

Z
i2N

1

�

�
Pt(i)

Pt

���
di:

Second, write �N
t recursively using the fact that non-optimizers maintain in t the

same price as in t� 1:

�N
t �

Z
i2N

1

�

�
Pt�1(i)

Pt�1

1

�t

���
di = ��t

Z
i2N

1

�

�
Pt�1(i)

Pt�1

���
di = ��t�

N
t�1

and use this and (47) in (50) to get:

�t = ��
�
t�

N
t�1 + (1� �)ep (�t)�� :

Finally, since non-optimizers (as well as optimizers) are selected randomly from the
set of all �rms, the dispersion of non-optimizers in t� 1 is equal to the dispersion
of the population: �N

t�1 = �t�1. The new model equation is therefore:

�t = ��
�
t�t�1 + (1� �)ep (�t)�� : (51)

A log-linear approximation of this equation is simply:

b�t = ��
� b�t�1:
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Hence, if in the NSS there is price stability and hence no price dispersion, a log-
linear approximation of the model will not give any dynamics for b�t if initially
there is no price dispersion (see Schmitt-Grohé and Uribe (2007)). Since in this
paper I do not go beyond a log-linear approximation of the model and wish to see
the dynamics of price dispersion in IRFs (that show the responses of the log-linear
deviations of the variables from the NSS values to shocks when they are initially
at the NSS), in Appendix I I calibrate a NSS with non-zero in�ation.

2.3. Foreign trade, the public sector, and the balance of payments
Firms in the export sector use domestic goods and �land�(representing natural re-
sources) to produce an export commodity. Land is assumed to be �xed in quantity,
hence generating diminishing returns. I assume that the export good is a single
homogenous primary good (a commodity). Firms in this sector sell their output in
the international market at the foreign currency price P �Xt . They are price takers
in factor and product markets. The price of primary goods in terms of the domes-
tic currency is merely the exogenous international price multiplied by the nominal
exchange rate: StP �Xt :
Let the production function employed by �rms in the export sector be the

following:

X�
t =

�
QXt
�bA
Y 1�b

A

t ; 0 < bA < 1; (52)

where QXt is the amount of domestic goods used as input in the export sector and
Yt is real GDP. These �rms maximize pro�t StP �Xt X�

t � PtQXt subject to (52). In
terms of domestic goods, they maximize:

�Xt
Pt

= etp
�
t

�
QXt
�bA
Y 1�b

A

t �QXt

where I de�ned the SOE�s external terms of trade (XTT):

p�t �
P �Xt
P �t

;

where P �t is the price index of the foreign currency price of the SOE�s imports.
Notice that the XTT is a ratio of two price indexes determined in the RW. Hence,
the follow identity relates the rates of foreign in�ation of exported and imported
goods to the XTT (giving the dynamics of the XTT):

p�t
p�t�1

=
��Xt
��t
; where ��Xt � P �Xt

P �Xt�1
:

The �rst order condition for pro�t maximization yields the export sector�s (factor)
demand for domestic goods:

QXt =
�
bAetp

�
t

� 1

1�bA Yt: (53)

Also, inserting the factor demand function in the production function shows that
optimal exports vary directly with the product of the RER and the XTT and GDP:

X�
t =

�
bAetp

�
t

� bA

1�bA Yt: (54)
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The real value of exports in terms of domestic goods is:

Xt =
StP

�X
t X�

t

Pt
= etp

�
tX

�
t = etp

�
t

�
bAetp

�
t

� bA

1�bA Yt = �X (etp
�
t )
bX Yt (55)

where for simplicity of notation I de�ne:

bX �
1

1� bA ; �X �
�
bA
� bA

1�bA :

Government expenditure is assumed to be a time-varying and stochastic frac-
tion Gt of private consumption expenditure. De�ne the gross government expen-
diture fraction as: Gt � 1 + Gt. Hence, using (31) and (55), GDP in terms of
domestic goods is:

Yt = �M
�

Mt
�
Gtp

C
t Ct +Xt � (1� aD) e1��

C

t �M
�

Mt
�
Gt
�
pCt
��C

Ct (56)

= aD�M
�

Mt
�
Gt
�
pCt
��C

Ct +Xt:

In the domestic goods market, the output of domestic �rms Qt must satisfy
�nal demand from households (including the resources for transactions), the gov-
ernment, and the export sector:10

Qt = aD�M
�

Mt
�
Gt
�
pCt
��C

Ct +Q
X
t = Yt �

�
1� bA

�
Xt: (57)

The public sector includes the Government and the CB. The latter issues cur-
rency (Mt) and domestic currency bonds (Bt), and holds international reserves
(Rt) in the form of foreign currency denominated riskfree bonds issued by the RW.
I assume that the CB has no operational costs and that CB bonds are only held
by domestic residents. The (�ow) budget constraint of the CB is:

Mt +Bt � StRt =Mt�1 + (1 + it�1)Bt�1 � (1 + i�t�1)StRt�1 (58)

= [Mt�1 +Bt�1 � St�1Rt�1]�QFt:

where

QFt = i�t�1StRt�1 + (St � St�1)Rt�1 � it�1Bt�1
=

�
i�t�1 + (1� 1=�t)

�
StRt�1 � it�1Bt�1

is the CB�s quasi-�scal surplus, which includes interest earned and capital gains
on international reserves minus the interest paid on its bonds. I assume that the
CB transfers its quasi-�scal surplus (or de�cit) to the Government every period.
Hence, its net wealth is constant. Furthermore, assuming for convenience that the
CB�s net worth is zero, the following holds for all t:

Mt +Bt � StRt =Mt�1 +Bt�1 � St�1Rt�1 = 0: (59)

10Notice that intermediate output in the export sector (53) can be written as:

QXt =
�
bA
� 1

1�bA (etp
�
t )
bX Yt = b

A
�
bA
� bA

1�bA (etp
�
t )
bX Yt = b

AXt

Hence, rearranging the second equality in (57) shows that GDP is the sum of the outputs of the
domestic and export sectors, minus the intermediate use of domestic goods in the export sector
Yt = Qt +Xt � bAXt.
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The CB supplies whatever amount of cash is demanded by households, and can
in�uence these supplies by changing Rt or Bt, i.e. intervening in the foreign ex-
change market or in the domestic currency bond market. In terms of domestic
goods, the CB balance, for all t, is:

mt + bt = etrt: (60)

This equation provides a constraint on the CB�s ability to simultaneously intervene
in the foreign exchange market (through sales and purchases of foreign reserves
rt) and in the domestic bonds market (through sales and purchases of domestic
currency CB bonds bt).11

The Government spends on goods, receives the quasi-�scal surplus (or �nances
the de�cit) of the CB, and collects taxes. I assume that �scal policy consists of
an exogenous autoregressive path for real government expenditures as a (gross)
fraction of private consumption (Gt) and collecting whatever lump-sum taxes are
needed to balance the budget each period. The Public Sector �ow budget constraint
is hence:

Taxt = Gt�M
�

Mt
�
PCt Ct �QFt: (61)

So in real terms:

taxt = Gt�M
�

Mt
�
pCt Ct � qft; (62)

qft =
�
1 + i�t�1 � 1=�t

� etrt�1
��t

� ((1 + it�1)� 1)
bt�1
�t
:

Inserting

Yt = wtNt +
�t
Pt
;

in the household budget constraint (7) and consolidating the household, CB and
government budget constraints yields the balance of payments equation:

rt � dt = CAt + rt�1 � dt�1;

where the current account (in foreign currency) is:

CAt =

�
1 + i�t�1
��t

� 1
�
rt�1 �

�
1 + i�t�1
��t

��t�1�D

�
et�1dt�1
Yt�1

�
� 1
�
dt�1 + TBt

11It is obviously unnecessary to restrict the CB net wealth to zero. Any �xed number would do.
Moreover, there is clearly the possibility of adding a degree of freedom for a more general model
in which the CB net wealth can vary (perhaps stochastically) or even be used as an additional
control variable. The latter would require additional modeling, such as market perceptions of
CB risk. For my purpose of modeling the simultaneous use of the interest rate and the rate
of nominal depreciation as control variables, the simplest assumption of zero CB net wealth is
su¢ cient.
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and, using (32) and (56), the trade balance (in foreign currency) is:

TBt =
1

et

�
Xt � et�M

�

Mt
�
GtC

N
t

�
=

1

et

h
Xt � (1� aD) e1��

C

t

�
pCt
��C

�M
�

Mt
�
GtCt

i
=

1

et

�
Xt �

1� aD
aD

e1��
C

t (Yt �Xt)

�
=

1

aDet

h�
pCt
�1��C

Xt � (1� aD) e1��
C

t Yt

i
:

2.4. Monetary and exchange rate policy
In this paper the CB uses either policy rules or optimal policy under commitment
(and full information) (OPC). The policy rules are simple (i.e., respond to a limited
number of endogenous variables through constant coe¢ cients) and they may have
either exogenous or endogenous and optimal coe¢ cients. Under simple rules with
exogenous coe¢ cients, in the case of the rule for the nominal interest rate there
is feedback (as in the typical Taylor-like rule) and the simple rule for nominal
depreciation may or may not involve feedback. In the case of optimal simple rules,
the CB is assumed to minimize a weighted average of the variances of some of
the endogenous variables. In the case of OPC, the CB is assumed to minimize
the expected discounted value of future losses for a suitably de�ned quadratic loss
function of some of the endogenous variables.
In any of these three cases, the CB can operate under one of three alternative

monetary regimes. I use the expression �monetary regime�broadly. It expresses the
combination of the CB�s operating procedures concerning the issuance of (base)
money, and the intervention it may have in the bond and FX markets to in�uence
the nominal interest rate and the rate of nominal currency depreciation. As shown
below, in this paper �monetary�policy (in the narrow sense) is passive, being money
issuance whatever is needed to balance the money market once the other two
policies are de�ned. For convenience, the three alternative monetary regimes are
denominated: I) a Managed Exchange Rate (MER) regime, in which the CB uses
both rules (or both instruments in the case of OPC), II) a Floating Exchange Rate
(FER) regime, in which the CB only uses the Taylor-like rule (or only uses the
interest rate as an instrument -in the case of OPC), and III) a Pegged Exchange
Rate (PER) regime, in which the CB only uses the rule for the rate of nominal
depreciation (or only uses the rate of nominal depreciation as an instrument, in
the case of OPC).
In the MER regime, through its regular and systematic interventions in the

domestic currency bond (or �money�) market and in the foreign exchange market,
the CB aims for the achievement of two operational targets: one for the interest
rate it; and another for the rate of nominal depreciation �t. When there are simple
policy rules (whether they are optimal or not), the CB can respond to deviations
of the consumption in�ation rate (�Ct ) from a target (�T ) which is the NSS value
of this variable, to deviations of GDP from its NSS value, and to deviations of
the RER from its NSS value. The rate of nominal depreciation can respond to
the same variables and additionally to the deviations of the CB�s international
reserves (IRs) ratio (to GDP ) from a long run target (
R). There may be history
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dependence (or inertia) in one or both of the two simple rules through the presence
of the lagged operational target variable. The simple rules are the following:

1 + it
1 + i

=

�
1 + it�1
1 + i

�h0 ��Ct
�Tt

�h1 �Yt
Y

�h2 �et
e

�h3
(63)

�t
�
=

�
�t�1
�

�k0 ��Ct
�Tt

�k1 �Yt
Y

�k2 �et
e

�k3 �etrt=Yt

R

�k4
; (64)

where h1 6= 0 and k4 6= 0 and variables without time subscripts denote NSS values.
The �rst of these is used in the MER and FER regimes, and the second is used in the
MER and PER regimes. In a �oating exchange rate regime (FER), the CB abstains
from intervening in the foreign exchange market. Hence, the international reserves
that appear in its balance sheet remain constant. For simplicity, I assume that
they remain constant at the NSS value r of the general model (with MER regime).
In a pegged exchange rate regime (PER), the CB abstains from intervening in the
domestic currency bond market. Hence, its stock of bonds remains constant, and
I assume that they remain at the NSS value b of the MER regime. In both of
the corner cases, one of the policy rules is dropped and one of the endogenous
variables is turned into an exogenous parameter. But there is an alternative way
of thinking about this issue which is more illuminating, particularly in an optimal
control framework.
The FER and PER regimes are extreme cases (�corner regimes�) in which the CB

chooses not to use one of its potential instruments. In the case of OPC this means
that the optimal policy under any one of the �corner� regimes cannot dominate
the optimal policy under the MER regime. One can de�ne these regimes as cases
in which the CB imposes an additional restriction on itself (�ties its hands�) and
relinquishes its use of one of its �control�variables. Hence that variable turns into
a �non-control�variable.12

To obtain a generalization of the standard DSGE monetary policy model, I
specify the instruments that the CB uses when it intervenes in each of the two
markets and include them in the model. The CB purchases or sells domestic
currency bonds, and thus changes its stock of bonds bt, to intervene with high
frequency in this market in order to attain its operational target for the interest
rate as determined by (63).13 And it purchases or sells foreign exchange to intervene
in the foreign exchange market, thereby changing its stock of international reserves
rt, in order to attain its operational target for the rate of nominal depreciation as
determined by (64). While at high frequency (hours, days, weeks) the CB is active
changing bt and/or rt, at low frequency (quarters in this paper) these variables
passively adapt to accommodate it and �t as given by the feedback policy rules
and the rest of the model equations.
To represent the constraints that the CB faces it is necessary to broaden the

usual policy model to include the CB balance sheet (60) and its arrangement with

12I hesitate to use the term �state variable� because in this model both i and � are non-
predetermined (or jump) variables and it is usual to call predetermined variables �state variables�.
13Notice that this high-frequency action may be modeled in di¤erent ways. But in the quarterly

frequency of the model the instruments, operational target variables, and the rest of the model
variables are related through the model equations that any higher frequency model must respect
if it is designed to be consistent with the quarterly model.



20

the rest of the government (Treasury) as to the use of the �scal dimension of the
CB�s �ow budget constraint (which I called CB quasi-�scal surplus qft above). By
assuming, as I do here, that the CB�s arrangement with the Treasury is that it
hands over its quasi-�scal surplus (or receives automatic �nance for its quasi-�scal
de�cit) period by period, the CB balance sheet equation is maintained period by
period in the sense that the CB�s net worth is constant. This can be seen as a
simple device for de�ning the CB�s �sterilization�policy, i.e. the value of bt, given
the values of mt (�determined�by money market balance), and the values of et
and rt. But it is probably more adequate to think more symmetrically that (60)
imposes a constraint on the simultaneous use of bt and rt. From this vantage
point, one should think of the �corner�regimes as the imposition of an additional
constraint (instead of the dropping of an endogenous variable). In the case of the
FER regime, the additional constraint is rt = r (an equation that replaces (64)).
And in the case of the PER regime, the additional constraint is bt = b (an equation
that replaces (63)). In terms of an optimal control framework (as is OPC), any one
of the �corner�regimes imposes an additional constraint on the policymaker and,
simultaneously, converts one of the �controls� (�t in the case of the FER regime
and it in the case of the PER regime) into a non-control variable. Hence, it quite
evident that the MER regime cannot be inferior to any of the two �corner�regimes
(in the sense of generating a larger loss). With the same loss function and the
same (basic) model equations and endogenous variables, but with one additional
constraint (equation) and one less �control�, the expected discounted loss cannot
be lower. Indeed, I show below that it is very much higher in all of the usual CB
preferences (represented through weights for in�ation and output deviations).

The policy framework in this paper is one in which monetary growth is passive.14

Indeed, de�ning the rate of money growth �t �Mt=Mt�1, (16) and (18) imply:

�t = �
C
t

L (1 + it)
L (1 + it�1)

�
� (1 + it)

'M (L (1 + it))
'M (1 + it�1)

� �1
�C

: (65)

Hence, under the MER or FER regimes, achieving the operational target for the
nominal interest rate bearing in mind the need to balance the money market implies
that the growth in real money (�t=�

C
t ) only depends on the current and lagged

interest rate. However, (65) is equally valid under the PER regime, where there is
no CB policy rule for the interest rate.

2.5. Functional forms for auxiliary functions

For calibrations it is convenient to de�ne the net functions:

�D
�

Dt
�
= �D

�

Dt
�
� 1; 'D

�

Dt
�
= 'D

�

Dt
�
� 1 (66)

�M
�

Mt
�
= �M

�

Mt
�
� 1; 'M

�

Mt
�
= 'M

�

Mt
�
� 1:

14See Olivera (1970).
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I use the following functional forms:15

�D
�

Dt
�
� �1

1� �2
Dt
; �1; �2 > 0; (67)

�M
�

Mt
�
� �1

(1 + �2

M
t )

�3
; �1; �2; �3 > 0 (68)

which, according to de�nitions (14), give:

'D
�

Dt
�
=

�1

(1� �2
Dt )
2 ; (69)

'M
�

Mt
�
=

�1

(1 + �2

M
t )

�3

�
1 + �3

�2

M
t

1 + �2

M
t

�
:

The liquidity preference function (17) that results from (68) is:

mt

pCt Ct
� 
Mt = L (1 + it) =

1

�2

24 �1�2�3
1� 1

1+it

! 1
�3+1

� 1

35 : (70)

And to get a more compact notation in some of the equations the following auxiliary
variables and equations are introduced:

�M;t = 1 +
�1

(1 + �2

M
t )

�3

'M;t = 1 + (�M;t � 1)
�
1 + �3

�2

M
t

1 + �2

M
t

�
:

2.6. The nonlinear system of equations
In this section I put together the model equations for simple feedback rules in a
MER regime.
Consumption Euler:

C��
C

t

'M;t
= � (1 + it)Et

 
C��

C

t+1

'M;t+1

1

�Ct+1

!
Risk-adjusted uncovered interest parity:

1 + it = (1 + i
�
t )�

�
t

"
1 +

�1

(1 + �2
Dt )
2

#
Et�t+1 (71)

Phillips equations:

�t =
Qt

pCt C
�C
t

+ ��Et�
��1
t+1�t+1

	t =
�

� � 1
Qt

pCt C
�C
t

mct + ��Et�
�
t+1	t+1

	t =

�
1� ����1t

1� �

� �1
��1

�t

15In calibrating the model parameters I found it important to include a third parameter in
the the transactions cost function. Otherwise I could not obtain realistic money demand interest
elasticities, and the variability of the instruments was systematically excessive.
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Dynamics of price dispersion:

�t = ��
�
t�t�1 + (1� �)

�
1� ����1t

1� �

� �
��1

Exports:
Xt = �X (etp

�
t )
bX Yt

Trade Balance:

TBt =
1

aDet

h�
pCt
�1��C

Xt � (1� aD) e1��
C

t Yt

i
Current Account:

CAt =

�
1 + i�t�1
��t

� 1
�
rt�1 �

�
1 + i�t�1
��t

��t�1

�
1 +

�1
1� �2
Dt�1

�
� 1
�
dt�1 + TBt:

Balance of Payments:
rt � dt = CAt + rt�1 � dt�1

Real marginal cost:
mct =

wt
�t

Labor market clearing:
wt = �

NpCt C
�C

t 'M;tN
�N

t

Hours worked:

Nt =
Qt
�t
�t

Domestic goods market clearing:

Qt = Yt �
�
1� bA

�
Xt

GDP:
Yt = aD�M;tGt

�
pCt
��C

Ct +Xt

Consumption relative price:

pCt =
�
aD + (1� aD) e1��

C

t

� 1

1��C

Money market clearing:

mt =
1

�2

24 �1�2�3
1� 1

1+it

! 1
�3+1

� 1

35 pCt Ct;
CB balance sheet:

bt = etrt �mt

Consumption in�ation:
�Ct
�t
=
pCt
pCt�1
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Real Exchange Rate:
et
et�1

=
�t�

�
t

�t

External terms of trade:
p�t
p�t�1

=
��Xt
��t

(74)

Tax collection:
taxt = Gt�M;tp

C
t Ct � qft

Quasi-�scal surplus:

qft =
�
1 + i�t�1 � 1=�t

� etrt�1
��t

� ((1 + it�1)� 1)
bt�1
�t

Great ratios:


Dt =
etdt
Yt
; 
Mt =

mt

pCt Ct
;

Auxiliary functions:

�M;t = 1 +
�1

(1 + �2

M
t )

�3
; 'M;t = 1 + (�M;t � 1)

�
1 + �3

�2

M
t

1 + �2

M
t

�
:

Interest rate feedback rule:

1 + it
1 + i

=

�
1 + it�1
1 + i

�h0 ��Ct
�Tt

�h1 �Yt
Y

�h2 �et
e

�h3
(75)

Nominal depreciation feedback rule:

�t
�
=

�
�t�1
�

�k0 ��Ct
�Tt

�k1 �Yt
Y

�k2 �et
e

�k3 �etrt=Yt

R

�k4
(76)

Notice that I am not constraining bt nor rt to be non-negative, which may
be quite unrealistic. Negative international reserves would mean borrowing from
abroad and, in the context of this model, would require a risk premium as in
the case of households. And many Central Banks are institutionally constrained
in lending to the non-�nancial private sector, making bt non-negative. Here, I
assume that the Central Bank�s target for reserves 
R is su¢ ciently high and the
household�s steady state demand for cash is su¢ ciently low to ensure that these
non-negativity constraints hold for all t and all relevant stochastic shocks.16

In addition to these equations there are those that are subject to stochastic
shocks, most of which are simple AR(1) processes. The external terms of trade
(XTT) is a particularly important external e¤ect for most SOE�s. This justi�ed
giving the calibration of its components a careful treatment. As a working hy-
pothesis, I assumed that the in�ation rates for imported and exported goods are
interrelated in such a way that a shock to one of them a¤ects the other through

16In the parent model ARGEM, it is banks that invest in domestic currency bonds and usually
Central Banks do have the institutional ability to assist banks, though usually with limitations.
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the dynamics of the XTT (which is the ratio of the two corresponding foreign price
levels). Hence, I assumed:

��Xt =
�
��Xt�1

����X �
��X

�1����X �
p�t�1

��
��X exp

�
��

�X
"�

�X

t

�
; (77)

��t =
�
��t�1

����
(��)1��

�� �
p�t�1

���� exp ����"��t � ;
p�t = p�t�1

��Xt

(��t )
���
:

Notice that if the two price indexes are non-stationary, this implies that they are
cointegrated. The XTT variable p�t plays the role of a cointegration error term,
���X � 0; ��� > 0 are the speeds of adjustment and (1;����) plays the role of a
cointegrating vector, with ��� = 1 as in the identity (74). In Appendix I, I estimate
these equations using data for Argentina and �nd evidence for the cointegration
hypothesis with an additional in�uence of ��Xt�1 on �

�
t , as in the equation below.

The equations subject to stochastic shocks are hence the following (where the
NSS values �; ��; ��X are assumed equal to one):
Productivity shock:

�t = (�t�1)
�� exp (��"�t)

Government expenditure shock:

Gt = (Gt�1)
�G G1��

G

exp
�
�G"Gt

�
Riskfree interest rate shock:

1 + i�t =
�
1 + i�t�1

��i�
(1 + i�)1��

i�

exp
�
�i

�
"i
�

t

�
Financing risk/liquidity shock:

��t =
�
��t�1

����
(��)1��

��

exp
�
��

�
"�

�

t

�
Exports in�ation shock:

��Xt =
�
��Xt�1

����X �
��X

�1����X �
p�t�1

��
��X exp

�
��

�X
"�

��

t

�
Imported in�ation shock:

��t =
�
��t�1

����
(��)1��

�� �
p�t�1

���� ���Xt�1����XN exp ����"��t � :
3. Numerical solution in Dynare
A detailed calibration of the parameters and derivation of the NSS values of the
endogenous variables can be found in Appendix 1. In this section I analyze the
stabilizing role of the two policy rules under the di¤erent monetary and exchange
rate regimes, mainly by studying the volatilities (standard deviations) of the main
endogenous variables in the model. I also explore the policy parameter ranges that
guarantee the Blanchard-Kahn (BK) stability conditions. Table 1 summarizes the
calibrated values of the main model parameters that are used throughout, and also
contains some comparisons with parameter values used in two other relevant SOE
models.17

17�E.S.�denotes �elasticity of substitution�, G_M stands for �Galí and Monacelli (2005)�, and
De P for �De Paoli (2006)�.
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Table 1 : Calibrated values of main model parameters
Parameters This paper G-M De P

� Intertemporal discount factor 0.99 0.99 0.99
�C Relative risk aversion for goods 1.5 1 1
�N Relative risk aversion for labor 0.5 3 0.47
� Probability of not adjusting price 0.66 0.75 0.66
� E.S. between domestic goods 6 6 10
�C E.S. domestic vs. imported goods 1.5 1 3
aD Coef. for share of domestic goods 0.86 0.6 0.6
bA Coef. in production function for commodities 0.5 1
"'D Elasticity of risk function in UIP 'D(ed=Y ) 2.0
"L Elasticity of L(1 + i) 1.02

The standard errors and persistence parameters used for the six shock variables
are given in Table 2. They were calibrated taking into account the available time
series for Argentina and the RW during the period 1994.1-2009.2: public consump-
tion to GDP

�
�G; �G

�
, imported and exported goods in�ation as they conform

Argentina�s XTT
�
��

�
; ��

�X
; ��

�
; ��

�X
; ��

�XN
�
, Libor 3 months

�
�i

�
; �i

��
, and bal-

ance of payments information on private sector foreign debts and interest payments
as well as my own calculation of the spread over Libor 3 months

�
��

�
; ��

��
. The

only cases in which I took the the standard deviations exactly according to the
data are the cases of �i

�
; ��, and ��

�X
. The rest were calibrated taking both

the data (except for ��) and the resulting theoretical standard deviation and vari-
ance decomposition for GDP with a baseline calibration of the two policy rules
(h1 = 0:8, h2 = 0:8, k4 = �0:8, and the rest of the coe¢ cients zero). This implied
diminishing the observed standard deviation of G (from 0.054 in a simple AR(1)
estimation from which I did use the persistence parameter �G), which seemed to
weigh too heavily in the volatility of Y , and increasing the standard deviation of
�� (from 0.0034), which seemed not to weigh enough. The value of �� was chosen
so that the resulting theoretical standard deviation of Y was similar to the data
for detrended and s.a. GDP for Argentina leaving out the crisis years 2001/2002.

Table 2 : Calibration of shock variables
standard deviations

�� �G �i
�

��
�

��
�

��
�X

0.01 0.03 0.0046 0.05 0.0295 0.0424
persistence

�� �G �i
�

��
�

��
�

��
�X

��
�XN

0.8 0.85 0.7 0.3 0.2 0.41 0.18
speeds of adjustment

��� ���X
0.181 -0.255

3.1. The e¤ects of the simple policy rule coe¢ cients under the MER regime
I �rst study some of the general stability properties of the model in relation to the
parameters of the two simple policy rules in the MER regime. The coe¢ cients on
the policy rules not explicitly mentioned below are made equal to zero. When I
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say that a particular con�guration of parameters gives stability I mean that all the
requirements for determinacy and non-explosiveness are met, including the rank
condition. In particular, there are no unit roots.
1) A very general result is that if the coe¢ cient that makes the rate of nominal

appreciation respond to central bank deviations from target is zero (k4 = 0) the
model has a unit root for any value of the remaining coe¢ cients. Hence, from now
on k4 will always be di¤erent from zero in the MER regime. Let k4 = �0:8 until
further notice. Observe that with negative values for k4, when there are insu¢ cient
reserves, and hence, etrt=Yt < 
R, i.e. bet + brt � bYt < 0, the CB tends to depreciate
the currency (more than in the NSS):

b�t = k4 �bet + brt � bYt� > 0:
Since a purchase of IR (increase in rt) expands the money supply (ceteris paribus)
one tends to associate it with a currency depreciation. But thins are more complex.
First, it is the ratio between the real domestic value of IR (etrt) to GDP that must
increase if in the initial period etrt=Yt < 
R. Second, that increase must take
place in the long run, so the direction of movement may be the opposite during
a transition period. In fact, I show below that sometimes it is optimal to have a
positive k4.
2) I �rst look at very streamlined policy rules with no inertia, an interest rate

policy rule that only responds to in�ation, and a nominal depreciation policy rule
that only responds to the deviation from the long run target for international
reserves. Hence, in (75) and (76) only h1 and k4 = �0:8 are non-zero. It is readily
seen that there is stability as long as h1 is greater than one: the classical Taylor
Principle. Otherwise there is indeterminacy.
3) Next I introduce interest rate inertia, letting h0 become positive. I �nd

that, for example, if h0 = 0:2, then h1 must be at least 0.81 (to two decimal
points) for stability. Otherwise there is indeterminacy. The scheme below shows
that gradually raising h0 lowers the minimum value of h1 required for stability
(and viceversa). Hence, there is an �inertia-in�ation-responsiveness frontier� for
the interest rate policy rule that is downward sloping and linear. For stability,
h0 + h1 must be greater than one and h1 must be di¤erent from zero. Hence, the
�Taylor Principle�holds in the model (see Woodford (2003), page 255, Proposition
4.4). Also, the higher above one is h0 + h1, the wider is the range within h2
can move without impairing stability, with the center of that range in the negative
territory. Furthermore, the �inertia-in�ation-responsiveness frontier�(IIRF) is valid
for a wide range of values for the remaining coe¢ cients in the second policy rule as
long as k4 is negative. That is, below this frontier there is no way to stabilize the
economy using interest rate responsiveness to GDP or the RER, or depreciation
rate responsiveness to in�ation, GDP or the RER.

h0 �0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 ::: 10:2 :::
h1 1:21 1:01 0:81 0:61 0:41 0:21 0:01 �0:19 ::: �9:19 :::

Furthermore, this is true for any other negative value of k4 as well as positive
values greater than 0.22. Hence, it is nice to see that the present generalization of
the standard monetary policy framework in DSGE models maintains some of the
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key ingredients in the more limited, conventional, model. On the other hand, if
k4 has low positive values (less than or equal to 0.23), there is a reversal in the
Taylor Principle: stability requires that h0 + h1 be less than one. Remarkably, a
policy with a positive k4 less than 0.24 (to two digits) and all the other coe¢ cients
in both policy rules equal to zero is stable. Positive values for k4 will come up
below as optimal values for simple policy rules in the MER regime for certain
CB styles. This illustrates the fact that the general model (with the MER) is
considerably more complex (and richer) than the standard models (with either of
the two �corner�regimes: FER or PER).
4) Next I looked a little closer into the e¤ects of changing one of the two critical

coe¢ cients h0 and h1 (keeping the rest at baseline values) on the standard devia-
tions of some of the endogenous variables Central Banks typically care for.18 First
I take a �xed value of h0 starting on the IIRF and �nd the volatilities (standard
deviations) for increasing values of h1. The results are in the Table 3, where the
minimum value in each row is highlighted in bold and the maximum is in italics.
The ratio between the maximum and minimum volatility is also shown in the last
column. It is interesting to see that some of the volatilities of variables of interest
decrease steadily (in�ation -piC in the Dynare �le-, price dispersion -DeltaP -, the
RER -e-, TB, Utility, d, �) while others increase steadily (C, real interest rate,
r), and still others at �rst diminish, reach their minimum, and then increase (Y ,
N , mc). Maximum volatilities are almost always in the extremes, but minimum
volatilities are more scattered.
Although attention is usually focused on the volatility of Y , it is C and N

that enter the aggregate utility of households, and their volatilities respond quite
di¤erently to increases in h1. Indeed, while the volatility of C increases steadily
with h1, that of N falls up to h1 = 2 and then starts to increase. The volatility
of period utility (Utility), however, steadily diminishes as h1 increases, as does the
volatility of in�ation and price dispersion.

18Amato and Laubach (2003) do a similar analysis for the case of sticky prices and wages when
only an interest rate rule is used.
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Table 3 : Means and standard deviations of
main variables for di¤erent values of h1

h_0=0.4 MEAN
VARIABLE h_1=0.61 h_1=0.8 h_1=1.0 h_1=1.5 h_1=2 h_1=3 h_1=4 h_1=5 max/min
piC 1.0150 0.0190 0.0155 0.0143 0.0126 0.0114 0.0095 0.0082 0.0072 2.64
DeltaP 1.0051 0.0082 0.0048 0.0038 0.0030 0.0027 0.0023 0.0022 0.0022 3.73
Y 1.4430 0.0742 0.0720 0.0709 0.0694 0.0690 0.0696 0.0709 0.0723 1.08
C 1.3108 0.0236 0.0272 0.0298 0.0351 0.0396 0.0466 0.0518 0.0557 2.36
N 1.3220 0.0731 0.0663 0.0637 0.0612 0.0606 0.0614 0.0630 0.0647 1.21
real_ii 1.0101 0.0111 0.0131 0.0154 0.0206 0.0248 0.0312 0.0359 0.0394 3.55
mc 0.8302 0.0166 0.0135 0.0135 0.0175 0.0227 0.0317 0.0386 0.0439 3.25
e 0.5951 0.0496 0.0494 0.0493 0.0490 0.0488 0.0485 0.0484 0.0482 1.03
TB 0.0082 0.0608 0.0604 0.0601 0.0596 0.0593 0.0588 0.0584 0.0582 1.04
d 1.2125 0.1020 0.1016 0.1013 0.1011 0.1009 0.1009 0.1008 0.1008 1.01
m 0.1154 0.0032 0.0032 0.0034 0.0042 0.0050 0.0062 0.0072 0.0080 2.50
Utility ­2.2744 0.0574 0.0551 0.0543 0.0536 0.0533 0.0531 0.0529 0.0529 1.09
ii 1.0253 0.0153 0.0148 0.0165 0.0214 0.0256 0.0320 0.0366 0.0401 2.71
b 0.0722 0.0160 0.0162 0.0161 0.0159 0.0157 0.0153 0.0151 0.0149 1.09
delta 1.0150 0.0711 0.0695 0.0685 0.0667 0.0653 0.0632 0.0617 0.0606 1.17
r 0.3152 0.0432 0.0439 0.0443 0.0453 0.0460 0.0470 0.0478 0.0484 1.12

STANDARD DEVIATION

The remaining rows in this table focus on the volatility of the CB intermediate
targets and instruments. While the volatility of i (ii in the Dynare �le) is non-
monotonic, decreasing at �rst and then increasing, the volatility of the second
operational target � (delta in the Dynare �le) is steadily decreasing. Furthermore,
the volatility of the variables that the CB actually uses as instruments on a day by
day basis, b and r, behave quite di¤erently. The volatility of b varies in the opposite
direction to i as h1 increases. To achieve a substantial reduction in the volatility
of the operational target (from 0.040 to 0.015) it is only necessary to increase the
volatility of the instrument 9%. The volatility of r also varies in the opposite
direction to that of � as h1 increases, reaching its maximum where the volatility
of of � reaches its minimum. But in this case not much reduction in volatility of �
(from 0.071 to 0.061) is achieved with a 12% increase in the volatility of r.
Table 4 shows a similar exercise except that h1 is now �xed and it is h0 that

increases. The volatilities of �C , �, Y , N , and Utility are highest for the lowest
value of h0, fall to a minimum and then start increasing. As in the previous
table, the volatilities of C and the real interest rate increase steadily. But now
the volatilities of e and TB increase steadily as h0 increases, though, as in the
previous case, they do not vary much. As to the intermediate targets and the
instruments, increases in h0 are very e¢ cient in reducing the volatility of i: with
a 9% increase in the volatility of b a substantial reduction in the volatility of i is
achieved (from 0.015 to 0.002). In order to implement an increasing �inertia�for
its interest rate operational target, the CB must use its corresponding instrument
with only moderately higher volatility. On the other hand, it is clear that h0 is not
e¢ cient for reducing the volatility of �.
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Table 4 : Means and standard deviations of
main variables for di¤erent values of h0

h_1=0.61 MEAN
VARIABLE h_0=0.4 h_0=0.6 h_0=0.8 h_0=1.0 h_0=2 h_0=3 h_0=4 h_0=5 max/min
piC 1.0150 0.0190 0.0142 0.0126 0.0118 0.0123 0.0137 0.0146 0.0152 1.61
DeltaP 1.0051 0.0082 0.0033 0.0015 0.0007 0.0040 0.0056 0.0064 0.0070 11.71
Y 1.4430 0.0742 0.0721 0.0710 0.0705 0.0705 0.0710 0.0713 0.0716 1.05
C 1.3108 0.0236 0.0272 0.0298 0.0320 0.0381 0.0405 0.0417 0.0424 1.80
N 1.3220 0.0731 0.0649 0.0620 0.0608 0.0612 0.0625 0.0633 0.0639 1.20
real_ii 1.0101 0.0111 0.0119 0.0129 0.0137 0.0158 0.0165 0.0169 0.0171 1.54
mc 0.8302 0.0166 0.0111 0.0094 0.0105 0.0198 0.0241 0.0263 0.0276 2.94
e 0.5951 0.0496 0.0497 0.0500 0.0503 0.0512 0.0515 0.0517 0.0519 1.05
TB 0.0082 0.0608 0.0610 0.0615 0.0620 0.0636 0.0643 0.0647 0.0649 1.07
d 1.2125 0.1020 0.1031 0.1045 0.1058 0.1094 0.1107 0.1113 0.1117 1.10
m 0.1154 0.0032 0.0027 0.0026 0.0025 0.0025 0.0025 0.0025 0.0025 1.28
Utility ­2.2744 0.0574 0.0543 0.0533 0.0529 0.0523 0.0523 0.0523 0.0523 1.10
ii 1.0253 0.0153 0.0111 0.0096 0.0085 0.0051 0.0035 0.0027 0.0022 6.95
b 0.0722 0.0160 0.0166 0.0168 0.0169 0.0172 0.0174 0.0174 0.0174 1.09
delta 1.0150 0.0711 0.0698 0.0694 0.0692 0.0692 0.0695 0.0697 0.0699 1.03
r 0.3152 0.0432 0.0440 0.0445 0.0447 0.0451 0.0451 0.0451 0.0452 1.05

STANDARD DEVIATION

5) Now I look at what happens when the CB changes the speed with which it
seeks to attain its long run target for international reserves through its nominal
depreciation response. For this I keep h0 and h1 constant at values in the interior
of the IIRF (h0 = 0:4 and h1 = 0:8 ) while k4 gets increasingly negative, starting
from -0.1.

Table 5 : Means and standard deviations of
main variables for di¤erent values of k4

h_0=0.4,  h_1=0.8
VARIABLE MEAN k_4=­0.1 k_4=­0.4 k_4=­0.7 k_4=­1 k_4=­2 k_4=­3 k_4=­4 k_4=­5 max/min
piC 1.0150 0.0135 0.0148 0.0154 0.0157 0.0161 0.0162 0.0163 0.0163 1.21
DeltaP 1.0051 0.0053 0.0049 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 1.10
Y 1.4430 0.0778 0.0719 0.0720 0.0721 0.0724 0.0725 0.0725 0.0726 1.08
C 1.3108 0.0282 0.0272 0.0272 0.0272 0.0273 0.0273 0.0273 0.0273 1.04
N 1.3220 0.0689 0.0664 0.0663 0.0664 0.0664 0.0665 0.0665 0.0665 1.04
real_ii 1.0101 0.0102 0.0121 0.0130 0.0134 0.0141 0.0144 0.0146 0.0147 1.44
mc 0.8302 0.0182 0.0140 0.0136 0.0134 0.0132 0.0131 0.0131 0.0131 1.39
e 0.5951 0.0496 0.0492 0.0494 0.0495 0.0497 0.0498 0.0499 0.0499 1.01
TB 0.0082 0.0722 0.0593 0.0601 0.0608 0.0619 0.0624 0.0626 0.0628 1.22
d 1.2125 0.1353 0.1101 0.1029 0.0997 0.0960 0.0948 0.0942 0.0938 1.44
m 0.1154 0.0033 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 1.03
Utility ­2.2744 0.0557 0.0549 0.0551 0.0552 0.0553 0.0554 0.0554 0.0554 1.01
ii 1.0253 0.0151 0.0147 0.0148 0.0149 0.0149 0.0150 0.0150 0.0150 1.03
b 0.0722 0.0919 0.0282 0.0178 0.0140 0.0110 0.0107 0.0108 0.0109 8.59
delta 1.0150 0.0504 0.0640 0.0686 0.0709 0.0740 0.0751 0.0757 0.0761 1.51
r 0.3152 0.1700 0.0645 0.0468 0.0397 0.0319 0.0295 0.0284 0.0278 6.12

STANDARD DEVIATION

Several of the variables of interest have minimum volatilities for k4 in the range
�0:1= � 0:7 . On the other hand, �, mc, d, and m have lowest volatilities at
k4 = �5. As k4 gets less negative (going from right to left in Table 5) an increas-
ingly volatile use of the instrument (r) progressively reduces the volatility of the
operational target (�). It also has the e¤ect of reducing the volatility of in�ation.
Surprisingly, it also implies a slight increase in the volatility of price dispersion.
Furthermore, the volatility of the other instrument (b) also increases, without a
signi�cant e¤ect on the volatility of the other operational target (i).
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6) To get a feeling for the range within I could move each policy rule coe¢ cient,
I started from a baseline calibration for the coe¢ cients in the two policy feedback
rules well within the IIRF frontier and looked for the intervals within which each of
the coe¢ cients could be moved individually (leaving the rest at the baseline value)
without impairing stability. I restricted my search to two decimal points accuracy
and only checked for parameter values below 10 in absolute value. The following
is the baseline calibration for this exercise:

Baseline calibration
h0 h1 h2 h3 k0 k1 k2 k3 k4
0:8 0:8 0:0 0:0 0:0 0:0 0:0 0:0 �0:8

The results for the three policy regimes are in the Table 6. Starting with the
general MER regime, both of the inertial coe¢ cient intervals of stability are quite
wide, both going into high superinertial levels (of 10 and 4.48 for the interest rate
and depreciation rate rules, respectively). Because unity is included in the feasible
intervals for h0 and k0, one or both of the simple policy rules can be implemented as
the feedback response of the �rst di¤erence (in the interest rate or the depreciation
rate, respectively) to the various arguments on the r.h.s. In the case of the interest
rate rule, there are no upper bounds for the reactions to in�ation or the RER, but,
perhaps surprisingly, there is an upper bound of only 1.04 for the response to GDP.
There is much more room for an accommodating policy of diminishing (raising)
the interest rate (up to -3.69) when GDP is high (low). In the case of the nominal
depreciation rule, there are no upper or lower bounds for the reactions to in�ation
or GDP, and an upper bound of 9.12 for the reaction to the RER. In the case of
k4, the only restriction is that it must be outside of a small interval around zero,
which is mostly on the positive side. The fact that there is a comparatively low
upper bound for the interest rate response to GDP while there is no bound for the
nominal depreciation response to the same variable is quite interesting, since the
stabilization of GDP is, of course, of primary interest in most CBs (along with the
stabilization of in�ation).

Table 6 : Stability ranges for individual coe¢ cients of policy rules
MER FER PER

Interest rate rule
h0 2 [0:21; 10] [0:21; 10]
h1 2 [0:21; 10] [0:21; 10]
h2 2 [�3:69; 1:04] [�3:54; 1:03]
h3 2 [�8:14; 10] [�6:89; 4:63]

Nominal depreciation rule
k0 2 [�4:55; 4:48] [�1:32; 0:67]
k1 2 [�10; 10] [�10; 10]
k2 2 [�10; 10] [�1:16; 1:67]
k3 2 [�10; 9:12] [�1:77; 2:82]
k4 2 [�10;�0:01] [ [0:23; 10] [�0:95; 2:44]

The FER regime shows stability ranges that are very similar to those of the �rst
policy rule of the MER regime. There is a narrowing of the range in the case of h3.
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The narrowing of the range of stability is more signi�cant in the case of the PER
regime, especially in the cases of k2, k3, and k4. On the other hand, in the PER
regime the stability range for k4 includes 0, indicating that the need to respond to
a target for international reserves is only valid in the more general MER regime.
Because GDP is typically available with a signi�cant lag, it is of interest to see

how these stability ranges are altered when the policy rules respond to output with
a one quarter lag. Hence, the exercise was repeated by replacing Yt with Yt�1 in
both simple policy rules (including the IRs ratio to GDP). The resulting stability
ranges are quite similar. For both the MER and FER regimes there is again no
upper bound for h0 and h1, and in this case there is no lower bound for h2, whereas
the same upper bound subsists. There is no lower bound for h3 in the case of the
MER regime, and an increase in the upper bound to 5:99 in the FER regime. The
stability ranges for the ki remain almost unaltered in the case of the MER regime.
In the PER regime, however, k1 is bounded above (by 0:67) whereas k2 is not.
Also, the stability range for k3 is widened to [�1:77; 2:82] and the lower bound for
k4 becomes �2:45.
Leaving behind the baseline calibration, it is interesting to verify that in the

PER case there is stability when all the coe¢ cients are zero (kj = 0; j = 0; 1; 2; 3; 4).
In this case the policy rule is to intervene in the FX market su¢ ciently to maintain
the nominal exchange rate �xed at the existing level, letting the economy run its
course, and not worrying about international reserves.19

7) The relatively narrow range of stability for the coe¢ cient on the interest rate
response to GDP deviations (h2) in the MER case, along with the boundless range
of stability for the corresponding coe¢ cient in the second policy rule (k2), naturally
raises the question of the e¤ects of the latter coe¢ cient on the volatilities. Table 7
shows these e¤ects. Most the variables reach minimum volatilities for non-positive
values of k2. And for a number of very signi�cant variables such as �, Y , C, N , m,
and Utility, the minimum is reached for highly negative values of k2 (-10 or -8).
Indeed, the lowest volatility of Y , N , and Utility is lower than the lowest volatility
they achieve, respectively, in any of the analogous tables above. Hence, reducing
the rate of nominal depreciation (or perhaps even appreciating the currency) when
GDP is above its NSS level has a very important stabilizing role for most of the
variables of interest. Notice that this implies using both instruments with high
volatility.

19However, one must bear in mind that here the nominal and real exchange rates are (in
spirit) multilateral. If we modeled a multicountry RW, the nominal exchange rate would be the
domestic currency price of a basket of the nominal exchange rates of the SOE�s trade partners,
with weights equal to the shares in trade. Hence, our peg is completely di¤erent from pegging
against the currency of a country with which only a small part of the SOE�s trade is done (as
was the case of Argentina�s ill fated �Convertibility�).



32

Table 7 : Means and standard deviations of
main variables for di¤erent values of k2

h_0=0.4,h_1=0.8,k_4=­0.8
VARIABLE MEAN k_2=­10.0 k_2=­8.0 k_2=­4.0 k_2=­2.0 k_2=0.0 k_2=2.0 k_2=4.0 k_2=6.0 max/min
piC 1.0150 0.0119 0.0117 0.0116 0.0117 0.0120 0.0128 0.0147 0.0183 1.58
DeltaP 1.0051 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 1.08
Y 1.4430 0.0596 0.0610 0.0645 0.0669 0.0700 0.0741 0.0800 0.0886 1.49
C 1.3108 0.0318 0.0318 0.0319 0.0320 0.0322 0.0325 0.0332 0.0346 1.09
N 1.3220 0.0545 0.0554 0.0576 0.0590 0.0608 0.0631 0.0662 0.0706 1.30
real_ii 1.0101 0.0147 0.0146 0.0144 0.0145 0.0148 0.0158 0.0180 0.0226 1.57
mc 0.8302 0.0112 0.0111 0.0109 0.0109 0.0109 0.0110 0.0114 0.0122 1.12
e 0.5951 0.0509 0.0503 0.0495 0.0494 0.0499 0.0511 0.0539 0.0592 1.20
TB 0.0082 0.0658 0.0637 0.0604 0.0600 0.0613 0.0655 0.0745 0.0907 1.51
d 1.2125 0.1061 0.1059 0.1055 0.1051 0.1045 0.1037 0.1034 0.1057 1.03
m 0.1154 0.0028 0.0028 0.0028 0.0029 0.0029 0.0029 0.0030 0.0031 1.11
Utility ­2.2744 0.0486 0.0492 0.0509 0.0519 0.0532 0.0549 0.0572 0.0607 1.25
ii 1.0253 0.0114 0.0114 0.0113 0.0114 0.0116 0.0121 0.0130 0.0146 1.29
b 0.0722 0.0908 0.0732 0.0369 0.0198 0.0167 0.0355 0.0616 0.0940 5.63
delta 1.0150 0.0669 0.0664 0.0659 0.0665 0.0687 0.0737 0.0843 0.1048 1.59
r 0.3152 0.1622 0.1340 0.0778 0.0538 0.0448 0.0629 0.0988 0.1467 3.62

STANDARD DEVIATION

3.2. Optimal simple rules
In view of these results, it is worthwhile to enquire what the optimal simple policy
rules coe¢ cients are when using an objective function that represents the CB�s
priorities with respect to to the volatilities it wants to minimize. In this sub-
section a (loss) function is de�ned that the CB wants to minimize and is de�ned
using weights that re�ect the CB�s priorities. It is an ad-hoc function, since it is
not based directly on the maximization of household utility (or its second order
approximation).
1) First I used Dynare�s �osr�(�optimal simple rule�) command to obtain the

policy coe¢ cients that minimized the variance of aggregate household Utility. In
the case of the MER regime:

argmin
hi;ki

f!UV ar (Utilityt)g

= argmin
hi;ki

lim
�!1

E0

1X
t=1

(1� �) �t
�
!U (Utilityt � Utility)2

	
:

A coe¢ cient !U =1000 was used in the loss function. The use of large coe¢ cients
in the objective function is motivated by the need to have �osr�e¤ectively search
the parameter space before settling on the optimal coe¢ cients. When I used low
coe¢ cients (in the order of 1) the search was very short and I had to iterate the
command (after putting the resulting coe¢ cients as the initial ones) many times
before converging to the truly optimal ones. I obtained the following optimal
coe¢ cients for the two simple policy rules (rounding o¤ to two digits):

h0 h1 h2 h3 k0 k1 k2 k3 k4
0:97 1:53 2:59 �0:06 2:41 �0:04 �0:80 �3:60 �0:44

Note that k4 is negative, and the sum of h0 and h1 is above one.20 Also,
the optimal value of k2 is -0.8. These values are in accordance with what was

20Some of these values are outside the stability ranges shown in the table above. However,
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obtained above. Under our simple rules, and assuming that the policymakers wish
to reduce the variance of the utility of households, it is optimal to react strongly
and positively to in�ation and GDP in the interest rate rule and strongly and
negatively to the RER in the nominal depreciation rule. A deviation of 1% in
in�ation above its target value here commands an increase of 1.5 p.p. in the
interest rate (assuming it was at the NSS level the previous period) and a slight
reduction of 0.04 p.p. in the rate of nominal depreciation (assuming it was at the
NSS level the previous period). And a deviation of 1% in GDP above its NSS
value commands an increase in the interest rate of 2.6 p.p. and a reduction of 0.8
p.p. in the rate of nominal depreciation. On the other hand, a deviation of 1%
in the RER above its NSS value commands a tiny reduction in the interest rate
(of 0.06 p.p.) and a signi�cant reduction in the rate of nominal depreciation of
3.6 p.p. The latter seems quite natural: if the currency is weak in real terms (e
is high), it is optimal to depreciate less. Finally, it is optimal to make strong use
of policy inertia in both rules (superinertial in the case of the second policy rule)
even though no CB preference for such policies has been assumed.
Table 8 shows the standard deviations of the main endogenous variables when

using these optimal simple rules.

Table 8 : Means and standard deviations of main variables under
optimal simple rules that minimize the variance of Utility

VARIABLE MEAN Std.Dev. Std.Dev./Mean
piC 1.015 0.065 0.06
DeltaP 1.005 0.044 0.04
Y 1.443 0.052 0.04
C 1.311 0.036 0.03
N 1.322 0.033 0.02
real_ii 1.010 0.020 0.02
mc 0.830 0.037 0.04
e 0.595 0.037 0.06
TB 0.008 0.058 7.11
d 1.213 0.131 0.11
m 0.115 0.005 0.05
Utility ­2.274 0.032 ­0.01
ii 1.025 0.053 0.05
b 0.072 0.102 1.41
delta 1.015 0.079 0.08
r 0.315 0.182 0.58

First, notice how small the standard deviation of Utility is. While the four
tables above all had standard deviations above 0.0486, the �osr�routine reduced it
to 0.032. Second, it is noteworthy that minimizing the volatility of Utility actually
implies having substantial volatilities in many of the variables that ad-hoc CB loss
functions usually try to minimize. While the highest s.d. of consumer in�ation in
the above four tables was 0.019, it is 0.065 when this optimal simple policy rule is

that range was obtained keeping all the other coe¢ cients at their baseline levels, which is not
done here. Dynare�s osr search changes direction whenever it goes into parameter values that do
not comply with the Blanchard and Kahn conditions. In some cases, the search engine tended to
obtain minor gains in loss with exceedingly high coe¢ cients (in absolute value, in the hundreds
or thousands) when using some initializations. I always ignored such gains and kept to the more
moderate coe¢ cient values.
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used. The contrast with the price dispersion variable is even greater. The highest
above was 0.008 and now it is 0.044.
2) Few CBs actually use models in which the explicit goal of the policymaker

has to do with household utility. This is probably due to the fact that most
models misrepresent reality in ways that CBs cannot take for granted: they assume
homogenous households (except possibly for the heterogeneity derived from wage
setting in a monopolistically competitive setting). The usual target variables of
CB loss functions are in�ation and GDP, and there is usually some explicit distaste
for excessive movement in the operational target variable (the interest rate). This,
of course, also brushes away, though in a di¤erent way, the incidence of CB actions
on di¤erent sectors of the economy and di¤erent factor incomes. However, whereas
aggregate household utility is an abstract concept because it is known that the
model is misspeci�ed in the dimension of household heterogeneity, variables like
in�ation, GDP, or the RER, have clear empirical counterparts that are very present
in the minds of policymakers when they make decisions. Hence, I now repeat
the above exercise assuming that the CB minimizes a linear combination of the
variances of its target variables:

argmin
hi;ki

�
!�V ar

�
�Ct
�
+ !Y V ar (Yt) + !eV ar (et) + !rV ar (rt)

+!�iV ar (�it) + !��V ar (��t)g

Aside from the usual terms (with weights !�, !Y , !�i), this loss function also
allows for CB preferences with respect to the variances of the RER, of the CBs
IRs, and of changes in the rate of nominal depreciation (with weights !e, !r, !��).
In Table 9 I de�ne six di¤erent CB styles (or preferences: A-F) according to the
combinations of weights in each. In all of them I have given the same weight to
the changes in each of the operational targets (50), and avoided zeros giving a
weight of 1 to target variables with no importance. Hence, in style A only in�ation
matters and in style B only GDP matters, whereas both matter equally in style
C. In style D (F) the real exchange rate (international reserves) matters as much
as in�ation and GDP. Finally, in style F in�ation, GDP, the RER and the IRs all
matter equally.

Table 9 : De�nition of CB styles
Weights Styles

A B C D E F
!� 100 1 100 100 100 100
!Y 1 100 100 100 100 100
!e 1 1 1 100 1 100
!r 1 1 1 1 100 100
!�i 50 50 50 50 50 50
!�� 50 50 50 50 50 50

With Dynare�s �osr�command I obtained the optimal simple policy rules for
each of the CB styles in each of the interest and exchange regimes. The coe¢ cients
are shown in Table 10:
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Table 10 : Optimal simple policy rules for di¤erent CB styles and regimes

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
h_0 0.33 0.01 1.86 1.17 1.63 1.28 1.71 1.28 1.94 1.28 1.97 1.28
h_1 1.26 2.04 ­1.01 ­0.39 1.92 ­0.20 ­2.09 ­0.22 0.56 ­0.20 0.49 ­0.22
h_2 0.02 ­0.05 4.34 ­3.72 1.43 ­0.34 2.56 ­0.34 ­5.24 ­0.34 ­5.37 ­0.34
h_3 0.12 0.04 ­0.21 ­0.40 0.82 ­0.02 ­0.05 ­0.01 0.14 ­0.02 0.14 ­0.01
k_0 ­0.03 ­0.26 3.08 ­0.47 0.44 ­0.37 3.39 ­0.43 0.26 ­0.39 0.34 ­0.41
k_1 ­0.07 ­2.08 ­3.92 ­2.13 ­1.31 ­2.82 ­1.18 ­3.70 1.28 ­4.46 1.25 ­3.71
k_2 ­0.08 ­2.36 ­2.28 ­4.66 ­0.12 ­3.85 ­3.05 ­3.92 ­2.04 ­5.09 ­2.16 ­4.32
k_3 ­0.43 ­1.09 1.18 0.46 ­0.91 ­0.10 1.40 0.08 0.16 0.11 ­0.04 0.22
k_4 ­0.08 ­2.18 0.40 ­0.87 ­0.06 ­2.57 0.13 ­2.35 ­0.74 ­3.29 ­0.84 ­2.74

E F
OPTIMAL SIMPLE POLICY RULES

A B C D

The inertial coe¢ cient for the interest rate (h0) is superinertial in all styles
except A, in which only in�ation matters. In the MER regime, the interest rate
response to in�ation deviations (h1) is greater than one in styles A and C, in both
of which in�ation matters. However, it is negative for styles B and D. Interestingly,
with the latter styles the optimal nominal depreciation rule in the MER regime
has k4 > 0. Furthermore, in both cases h0+ h1 is less than one and h1 is negative,
and yet there is Blanchard-Kahn stability since in both of these cases the interest
rate response to GDP is su¢ ciently high (4.3 and 2.6, respectively). This is again
in line with the Taylor Principle (see Woodford (2003), Proposition 4.4). Also, the
depreciation rate response to to in�ation and GDP are highly negative (-2.3 and
-3.1, respectively).
In the FER regime, central banks of style A practically respond only to in�ation,

with a coe¢ cient greater than two. However, in all the rest of the styles, h0 is
superinertial and h1 is negative. The inequality h0 + h1 > 1 is valid in all CB
styles except B where only GDP stabilization matters. Curiously, here it is a very
negative interest rate reaction to GDP deviations maintains stability, quite the
opposite from the MER regime case. And in the PER regime, all the coe¢ cients
are negative except for k3, which is positive for styles B, D, E, and F. Hence,
under the PER regime, high in�ation and high GDP imply lowering the rate of
nominal depreciation (or appreciating), and the previous�period rate of nominal
depreciation a¤ects the present rate negatively. Finally, in the PER regime k4 is
negative for all the CB styles considered, and the highest coe¢ cient in absolute
value is always k2. The latter means that responses to deviations of GDP tend to
very �rm, regardless of the particular CB preferences.
To see if the relatively high preference for inertia in the operational targets

(!�i = !�� = 50) in the de�nitions of the CB styles is the reason for the high
superinertial coe¢ cients in Taylor rule under styles B-F, I made the same calcula-
tions using a much lower preference for inertia: !�i = !�� = 10.21 Table 11 shows
that the broad outline of the optimal policy rules remain very similar to the previ-
ous table. Paradoxically, h0 actually increases in six of the twelve cases, and quite
substantially for some, showing that it is de�nitely not the preference of avoiding
changes in the operational targets that are behind the high inertial coe¢ cients in
the Taylor rule.

21For notational simplicity I maintain the same names for the alternative CB preferences as in
Table 9 although the last two rows of that table are modi�ed.
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Table 11 : Optimal simple policy rules for alternative CB styles
with !�i = !�� = 10

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
h_0 0.79 0.29 1.13 1.38 1.14 1.28 5.33 1.27 4.11 1.28 3.59 1.27
h_1 1.53 3.01 ­0.21 0.27 ­0.66 ­0.11 ­2.54 ­0.12 ­0.15 ­0.11 0.05 ­0.12
h_2 ­0.03 0.01 4.10 ­4.66 1.58 ­0.23 ­4.80 ­0.23 ­2.25 ­0.23 ­2.94 ­0.23
h_3 0.08 0.22 ­0.19 0.32 0.02 ­0.01 0.81 0.00 0.37 ­0.01 0.52 0.00
k_0 ­0.09 ­0.38 2.88 ­0.82 1.26 ­1.11 ­0.64 ­0.91 0.09 ­1.26 0.25 ­1.16
k_1 ­0.01 ­10.58 ­2.13 ­1.64 1.72 ­7.97 1.87 ­5.43 ­0.90 ­8.80 ­0.58 ­8.08
k_2 ­0.07 ­3.66 ­2.06 ­4.93 ­7.32 ­7.57 ­2.17 ­5.38 ­1.98 ­9.49 ­1.94 ­7.76
k_3 ­0.39 ­1.52 1.00 0.28 ­0.02 0.45 ­1.97 0.53 0.71 0.75 ­0.77 1.02
k_4 ­0.15 ­3.24 0.34 ­1.52 0.02 ­3.73 ­0.18 ­2.59 ­3.53 ­5.26 ­4.65 ­3.87

E FA B C D
OPTIMAL SIMPLE POLICY RULES

Table 12 shows the standard deviations of the main endogenous variables in
each regime and CB style, as well as the total and relative losses. As expected, the
loss is always lowest with the MER regime. For CB styles A and B the losses with
the FER and PER regimes are between six and eleven times higher than with the
MER regime. In style C, where both in�ation and GDP matter, the losses in the
FER and PER regimes are 3 and 2.4 times the loss with the MER regime. The
di¤erences in the losses are lowest with CB styles E and F (where IRs matter). But
the corner regimes still have losses that are between 30% and 70% greater than in
the MER regime.
It should be emphasized that the PER regime here is not the usual pegged

exchange regime. The simple rule in the PER regime includes the typical peg,
which has no feedback. But this section shows that it is in general optimal to
operate the PER regime with feedback. And the feedback coe¢ cients are in general
quite high (in absolute value). Hence, it is optimal to operate a very active peg
for any of the CB styles.

Table 12 : Standard deviations of main variables
and losses under optimal simple rules

MEAN

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
piC 1.015 0.006 0.016 0.011 0.070 0.157 0.045 0.033 0.039 0.017 0.039 0.039 0.017 0.037 0.039 0.017 0.037 0.039 0.018
DeltaP 1.005 0.004 0.004 0.007 0.050 0.109 0.029 0.019 0.022 0.009 0.027 0.022 0.009 0.024 0.022 0.009 0.024 0.022 0.009
Y 1.443 0.073 0.070 0.078 0.012 0.014 0.056 0.040 0.042 0.063 0.027 0.043 0.063 0.017 0.042 0.063 0.017 0.043 0.063
C 1.312 0.037 0.039 0.074 0.086 0.089 0.053 0.078 0.072 0.048 0.077 0.072 0.049 0.082 0.072 0.044 0.082 0.072 0.045
N 1.322 0.063 0.064 0.079 0.072 0.138 0.037 0.036 0.054 0.054 0.061 0.054 0.053 0.050 0.054 0.053 0.049 0.054 0.053
real_ii 1.010 0.011 0.035 0.052 0.017 0.035 0.035 0.028 0.022 0.035 0.023 0.021 0.036 0.032 0.022 0.032 0.031 0.021 0.032
mc 0.830 0.026 0.025 0.069 0.079 0.092 0.045 0.072 0.071 0.036 0.072 0.070 0.036 0.076 0.071 0.031 0.076 0.070 0.032
e 0.594 0.038 0.052 0.048 0.037 0.052 0.048 0.044 0.055 0.048 0.034 0.055 0.048 0.050 0.055 0.049 0.049 0.055 0.048
TB 0.007 0.060 0.067 0.058 0.052 0.068 0.058 0.080 0.073 0.059 0.068 0.073 0.058 0.060 0.073 0.059 0.059 0.073 0.059
d 1.214 0.135 0.081 0.099 0.123 0.072 0.094 0.144 0.087 0.094 0.126 0.086 0.094 0.094 0.087 0.094 0.095 0.086 0.093
m 0.115 0.003 0.006 0.011 0.014 0.019 0.007 0.007 0.008 0.007 0.012 0.009 0.007 0.011 0.008 0.006 0.011 0.009 0.006
Utility ­2.273 0.050 0.055 0.054 0.074 0.105 0.041 0.051 0.057 0.050 0.064 0.058 0.049 0.060 0.057 0.050 0.060 0.058 0.050
ii 1.025 0.011 0.036 0.048 0.076 0.136 0.049 0.026 0.033 0.036 0.055 0.034 0.038 0.042 0.033 0.034 0.042 0.034 0.035
b 0.072 0.106 0.021 0.000 0.116 0.022 0.000 0.163 0.018 0.000 0.163 0.018 0.000 0.014 0.018 0.000 0.014 0.018 0.000
delta 1.015 0.029 0.081 0.058 0.066 0.166 0.078 0.044 0.093 0.066 0.036 0.092 0.066 0.073 0.093 0.068 0.072 0.092 0.067
r 0.316 0.197 0.000 0.042 0.196 0.000 0.035 0.277 0.000 0.035 0.282 0.000 0.035 0.038 0.000 0.034 0.041 0.000 0.034
Loss 0.08 0.87 0.53 0.10 0.65 0.91 0.41 1.23 0.97 0.44 1.53 1.20 0.74 1.23 1.09 0.99 1.53 1.32
Relative Loss 10.9 6.6 6.5 9.1 3.0 2.4 3.5 2.7 1.7 1.5 1.5 1.3

OPTIMAL SIMPLE POLICY RULES
STANDARD DEVIATION

A B C D E F

3.3. Optimal policy under commitment
In this section I use Dynare�s �ramsey� command to obtain the optimal policy
under commitment, i.e., the policy functions that yield the minimum expected
value (conditional on the information at t = t0, including given initial conditions
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for the predetermined variables) of the discounted ad-hoc loss function:

Lt0 = Et0
1X
t=t0

�t�t0
1

2
Lt, (78)

where the period loss function Lt is given by:

Lt = !�
�
�Ct � �T

�2
+ !Y (Yt � Y )2 + !e (et � e)2 + !r (rt � r)2 + !�i (�it)2(79)

+!�� (��t)
2 ;

subject to all the model equations (except, of course, the simple policy rules). I
maintain the same de�nition of CB styles as in the previous section (with !�i =
!�� = 50). Also, for simplicity I assume that the planner has the same intertem-
poral discount rate as households (� = 0:99). In Table 13 I report the standard
deviations of the main variables as well as the expected loss for the alternative CB
styles (A-F) and the alternative policy regimes (MER, FER, PER).

Table 13 : Standard deviations of main variables and
losses under optimal policy under commitment

VARIABLE MEAN

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
piC 1.015 0.007 0.035 0.020 0.052 0.145 0.118 0.025 0.036 0.031 0.025 0.036 0.031 0.032 0.036 0.032 0.032 0.036 0.031
DeltaP 1.005 0.004 0.019 0.012 0.037 0.100 0.082 0.015 0.022 0.020 0.015 0.023 0.020 0.020 0.022 0.019 0.020 0.023 0.019
Y 1.443 0.072 0.096 0.070 0.008 0.021 0.019 0.018 0.024 0.023 0.019 0.026 0.024 0.022 0.024 0.024 0.023 0.026 0.025
C 1.312 0.043 0.058 0.060 0.080 0.090 0.089 0.073 0.078 0.077 0.068 0.077 0.077 0.075 0.078 0.072 0.074 0.077 0.073
N 1.322 0.063 0.090 0.068 0.054 0.129 0.110 0.038 0.047 0.046 0.038 0.047 0.046 0.044 0.047 0.044 0.044 0.047 0.044
real_ii 1.010 0.012 0.036 0.047 0.017 0.050 0.043 0.023 0.044 0.037 0.020 0.045 0.038 0.033 0.044 0.035 0.033 0.045 0.035
mc 0.830 0.034 0.075 0.053 0.076 0.091 0.087 0.068 0.070 0.070 0.065 0.071 0.070 0.068 0.070 0.066 0.068 0.071 0.066
e 0.594 0.039 0.049 0.048 0.037 0.051 0.050 0.038 0.052 0.049 0.028 0.051 0.049 0.049 0.052 0.049 0.048 0.051 0.049
TB 0.007 0.051 0.057 0.056 0.047 0.063 0.060 0.052 0.065 0.058 0.052 0.064 0.058 0.058 0.065 0.059 0.056 0.064 0.058
d 1.214 0.135 0.071 0.091 0.121 0.066 0.082 0.129 0.073 0.089 0.112 0.071 0.087 0.091 0.073 0.088 0.090 0.071 0.087
m 0.115 0.004 0.011 0.009 0.012 0.019 0.016 0.009 0.010 0.010 0.009 0.011 0.010 0.009 0.010 0.009 0.009 0.011 0.009
Utility ­2.273 0.050 0.055 0.053 0.064 0.099 0.089 0.054 0.058 0.057 0.053 0.058 0.057 0.057 0.058 0.056 0.056 0.058 0.056
ii 1.025 0.010 0.057 0.044 0.058 0.125 0.103 0.032 0.046 0.040 0.031 0.048 0.042 0.037 0.046 0.038 0.038 0.048 0.039
b 0.072 0.100 0.015 0.000 0.100 0.023 0.000 0.116 0.022 0.000 0.149 0.022 0.000 0.013 0.022 0.000 0.013 0.022 0.000
delta 1.015 0.027 0.076 0.059 0.051 0.150 0.123 0.036 0.080 0.068 0.034 0.080 0.067 0.067 0.080 0.069 0.066 0.080 0.068
r 0.316 0.188 0.000 0.036 0.178 0.000 0.036 0.206 0.000 0.036 0.262 0.000 0.036 0.037 0.000 0.034 0.039 0.000 0.034
Loss 115.7 450.9 403.1 59.0 159.7 173.8 179.6 492.8 476.7 224.5 519.9 501.7 417.6 492.8 492.2 441.5 519.9 517.4
Relative Loss 3.90 3.48 2.71 2.95 2.74 2.65 2.32 2.24 1.18 1.18 1.18 1.17

OPTIMAL POLICY UNDER COMMITMENT
STANDARD DEVIATION

A B C D E F

As expected, the MER regime always dominates the two �corner�regimes. Un-
der CB styles A, B, and C, the losses under the FER and PER regimes are between
2.65 and 3.90 times the corresponding losses under the MER regime. Under CB
styles E and F, where IRs matter for the CB, the losses under the FER and PER
regimes are �only� 17/18% higher than in the MER regime. In CB style B, in
which only GDP matters, the FER regime achieves a signi�cantly lower cost than
the PER regime. In CB styles A, C, and D, it is the PER regime that is second
best. And in CB styles E and F, the two �corner�regimes obtain losses that are
approximately the same.
Tables 14 and 15 show the coe¢ cients of the policy functions in the reduced form

(or �solution�of the DSGE model) corresponding to the instrument variables (in
the sense of optimal control theory), i.e., the operational targets (in the economic
sense), for the three alternative regimes. These variables22 are linear functions of

22Notice that we show the variables in the tables as they appear in the Dynare output. However,
it is necessary to �read�the variables (contemporaneous or lagged) as their log-linear deviations
with respect to their NSS values.
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the 9 non-shock predetermined variables (i, �, r, e, Y , d, �, pC , p�), the 6 shock
variables23, and the Lagrange multipliers corresponding to the 5 equations with
forward-looking terms (the UIP equation, the two dynamic Phillips equations, the
consumption Euler equation, and the real interest rate equation). In all of the
CB styles there is substantial inertia in the interest rate policy function (between
0.28 and 0.69) and in the nominal depreciation policy function (between 0.1 and
0.6). This is hardly surprising since all these CB styles have been de�ned to show a
signi�cant preference for policy inertia. What is perhaps surprising is the dispersion
in the inertial coe¢ cients, given that they all have the same weight for preference
for inertia (50). The coe¢ cients on the Lagrange multipliers are relatively small,
implying that the policy function coe¢ cients (for the rest of the variables) do not
vary much from quarter to quarter when these e¤ects are cumulated (attributable
to the commitment to never again re-optimize). The largest of these coe¢ cients
correspond to the Lagrange multipliers for the Phillips equations under CB style
B, where only GDP matters.

Table 14 : Reduced form policy functions under optimal policy
under commitment and MER regime

STYLES:
ii delta ii delta ii delta ii delta ii delta ii delta

Constant 1.025 1.015 1.025 1.015 1.025 1.015 1.025 1.015 1.025 1.015 1.025 1.015
ii(­1) 0.689 0.011 0.551 0.325 0.387 0.106 0.376 0.098 0.307 0.040 0.307 0.040
delta(­1) 0.011 0.358 0.325 0.604 0.106 0.302 0.098 0.240 0.040 0.131 0.040 0.130
r(­1) ­0.021 ­0.070 0.044 ­0.044 0.022 ­0.073 0.012 ­0.054 ­0.227 ­0.353 ­0.230 ­0.344
e(­1) 0.029 ­0.564 0.507 ­0.484 0.372 ­0.685 0.321 ­0.883 ­0.004 ­1.314 ­0.002 ­1.322
Y(­1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
d(­1) 0.021 0.070 ­0.044 0.044 ­0.022 0.073 ­0.012 0.054 0.227 0.354 0.231 0.345
DeltaP(­1) 0.009 0.007 ­0.019 0.016 ­0.009 0.031 ­0.006 0.042 0.014 0.069 0.014 0.069
pC(­1) ­0.177 0.364 0.008 0.012 0.119 0.195 0.115 0.208 0.105 0.218 0.105 0.218
pStar(­1) ­0.017 ­0.182 0.194 ­0.184 0.158 ­0.235 0.148 ­0.237 ­0.141 ­0.631 ­0.145 ­0.619
z_piStar(­1) ­0.004 ­0.106 0.073 ­0.071 0.036 ­0.123 0.024 ­0.138 ­0.058 ­0.261 ­0.059 ­0.260
z_piStarX(­1) ­0.021 ­0.126 0.110 ­0.106 0.069 ­0.163 0.055 ­0.136 ­0.112 ­0.412 ­0.115 ­0.405
z_G(­1) 0.012 ­0.052 0.154 ­0.124 0.115 ­0.162 0.108 ­0.216 ­0.021 ­0.404 ­0.021 ­0.402
z_epsilon(­1) ­0.029 ­0.031 0.066 ­0.053 0.018 ­0.114 0.008 ­0.161 ­0.069 ­0.273 ­0.069 ­0.273
z_iStar(­1) 0.045 0.169 ­0.117 0.117 ­0.071 0.178 ­0.044 0.136 0.390 0.725 0.397 0.708
z_phiStar(­1) 0.035 0.120 ­0.075 0.075 ­0.038 0.124 ­0.022 0.093 0.360 0.583 0.365 0.567
mult_8(­1) 0.000 0.004 0.003 0.006 0.001 0.003 0.001 0.002 0.000 0.001 0.000 0.001
mult_15(­1) 0.005 0.026 0.123 0.165 0.016 0.021 0.016 0.023 0.019 0.027 0.019 0.027
mult_16(­1) ­0.003 0.038 0.161 0.216 0.020 0.025 0.021 0.029 0.024 0.036 0.024 0.036
mult_22(­1) 0.007 ­0.002 ­0.002 ­0.004 0.001 0.001 0.001 0.000 0.001 ­0.001 0.001 ­0.001
mult_30(­1) 0.001 ­0.002 ­0.004 ­0.005 ­0.001 ­0.001 ­0.001 ­0.001 0.000 ­0.001 0.000 ­0.001
eps_epsilon ­0.036 ­0.039 0.083 ­0.066 0.022 ­0.143 0.011 ­0.201 ­0.087 ­0.341 ­0.087 ­0.341
eps_G 0.014 ­0.061 0.181 ­0.145 0.135 ­0.191 0.127 ­0.254 ­0.024 ­0.476 ­0.025 ­0.473
eps_iStar 0.037 0.151 ­0.111 0.111 ­0.074 0.161 ­0.048 0.125 0.266 0.582 0.271 0.570
eps_phiStar ­0.033 ­0.114 0.075 ­0.075 0.041 ­0.120 0.024 ­0.089 ­0.283 ­0.513 ­0.288 ­0.500
eps_piStar 0.025 ­0.255 0.121 ­0.123 0.029 ­0.257 0.001 ­0.391 ­0.045 ­0.399 ­0.041 ­0.412
eps_piStarX ­0.052 ­0.306 0.269 ­0.259 0.168 ­0.398 0.135 ­0.332 ­0.273 ­1.006 ­0.281 ­0.987

E

OPTIMAL POLICY UNDER COMMITMENT
MER

A B C D F

23Notice that the shock variables appear here because Dynare automatically expresses the
transition or policy functions of all variables (including those that are jump variables) in terms
of lagged predetermined variables. If, as in Klein (2000) we were to express jump variables in
terms of contemporaneous predetermined variables the shocks would not appear in the tables.
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In order to study the sensitivity of the expected discounted loss under Ram-
sey to di¤erent parameter values, it is useful to know the structural parameter
ranges under which (under a MER regime and Ramsey optimal policy rules) there
is stability. A simple way to approach this is to start from the baseline set of
parameters used above, and vary each parameter individually using a speci�c CB
style until stability is impaired. I used CB style C. Table 16 shows that there are
remarkably wide ranges within which the parameters can be moved individually
while maintaining stability. Obviously, in some cases I did not bother to �nd the
actual extremes.

Table 15 : Reduced form policy functions under optimal policy
under commitment and FER and PER regimes

Regimes:
STYLES: A B C D E F A B C D E F

ii ii ii ii ii ii delta delta delta delta delta delta
Constant 1.025 1.025 1.025 1.025 1.025 1.025 1.015 1.015 1.015 1.015 1.015 1.015
ii(­1) 0.635 0.523 0.279 0.277 0.279 0.277 ­0.139 0.351 0.002 0.003 0.002 0.003
delta(­1) ­0.086 0.352 0.015 0.016 0.015 0.016 0.185 0.571 0.105 0.105 0.104 0.104
r(­1) ­0.178 ­0.014 ­0.342 ­0.354 ­0.342 ­0.354 ­0.378 ­0.056 ­0.376 ­0.375 ­0.379 ­0.379
e(­1) ­0.322 0.514 ­0.156 ­0.153 ­0.156 ­0.153 ­1.259 ­0.593 ­1.448 ­1.450 ­1.452 ­1.453
Y(­1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
d(­1) 0.178 0.014 0.342 0.355 0.342 0.355 0.379 0.057 0.377 0.376 0.380 0.380
DeltaP(­1) 0.032 ­0.019 0.022 0.023 0.022 0.023 0.043 0.020 0.074 0.074 0.074 0.074
pC(­1) ­0.176 0.008 0.102 0.102 0.102 0.102 0.404 0.013 0.216 0.216 0.215 0.215
pStar(­1) ­0.237 0.153 ­0.273 ­0.288 ­0.273 ­0.288 ­0.599 ­0.229 ­0.676 ­0.675 ­0.681 ­0.680
z_piStar(­1) ­0.084 0.065 ­0.098 ­0.100 ­0.098 ­0.100 ­0.249 ­0.088 ­0.272 ­0.273 ­0.272 ­0.273
z_piStarX(­1) ­0.167 0.091 ­0.187 ­0.197 ­0.187 ­0.197 ­0.366 ­0.134 ­0.415 ­0.416 ­0.415 ­0.416
z_G(­1) ­0.104 0.149 ­0.077 ­0.081 ­0.077 ­0.081 ­0.308 ­0.155 ­0.491 ­0.490 ­0.505 ­0.505
z_epsilon(­1) ­0.112 0.068 ­0.101 ­0.102 ­0.101 ­0.102 ­0.165 ­0.068 ­0.290 ­0.290 ­0.292 ­0.292
z_iStar(­1) 0.352 ­0.023 0.600 0.622 0.600 0.622 0.737 0.151 0.745 0.745 0.745 0.746
z_phiStar(­1) 0.293 0.014 0.542 0.562 0.542 0.562 0.614 0.099 0.615 0.613 0.619 0.618
mult_9(­1) ­0.001 0.004 0.000 0.000 0.000 0.000 0.002 0.006 0.001 0.001 0.001 0.001
mult_16(­1) 0.009 0.121 0.021 0.021 0.021 0.021 0.035 0.176 0.027 0.027 0.027 0.027
mult_17(­1) 0.003 0.158 0.026 0.026 0.026 0.026 0.052 0.232 0.036 0.036 0.036 0.036
mult_23(­1) 0.006 ­0.002 0.001 0.001 0.001 0.001 ­0.004 ­0.005 ­0.001 ­0.001 ­0.001 ­0.001
mult_31(­1) 0.001 ­0.004 0.000 0.000 0.000 0.000 ­0.002 ­0.006 ­0.001 ­0.001 ­0.001 ­0.001
eps_epsilon ­0.140 0.085 ­0.126 ­0.128 ­0.126 ­0.128 ­0.207 ­0.085 ­0.363 ­0.363 ­0.364 ­0.365
eps_G ­0.122 0.175 ­0.090 ­0.095 ­0.090 ­0.095 ­0.362 ­0.182 ­0.578 ­0.577 ­0.594 ­0.594
eps_iStar 0.275 ­0.051 0.418 0.435 0.418 0.435 0.567 0.144 0.581 0.582 0.578 0.579
eps_phiStar ­0.256 0.013 ­0.426 ­0.442 ­0.426 ­0.442 ­0.515 ­0.103 ­0.526 ­0.526 ­0.528 ­0.528
eps_piStar ­0.053 0.127 ­0.076 ­0.066 ­0.076 ­0.066 ­0.445 ­0.145 ­0.452 ­0.453 ­0.451 ­0.451
eps_piStarX ­0.406 0.222 ­0.457 ­0.480 ­0.457 ­0.480 ­0.892 ­0.328 ­1.011 ­1.014 ­1.012 ­1.016

FER PER
OPTIMAL POLICY UNDER COMMITMENT

The degree of price stickiness (�) in the New Keynesian Phillips equation is
often considered an important factor in determining the desirability of alternative
exchange regimes. Table 17 shows the losses under each CB style and exchange
rate regime for six alternative degrees of price stickiness, which go from practically
no price stickiness (�=0.01) to very high price stickiness (�=0.90). As expected,
for each CB style and value of �, the MER regime does better and in most cases
much better. CB styles E and F are the ones for which the advantage of the MER
regime is smallest, especially when there is little price stickiness: for �=0.01, 0.10
and 0.30, the PER regime has a loss which is only 3-5% higher than in the MER
regime. This is probably because the CB preference for stabilizing IRs makes it
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behave similarly in MER and PER regimes. In the FER regime the excess loss is
in the 7-10% range for CB styles E and F. However, for CB styles A, B, and C,
the corner regimes have losses between 20% and 260% higher. The highest relative
advantage for the MER regime is obtained for high degrees of price stickiness. In
general, the PER regime is second best for low degrees of price stickiness (� �0.30).
For �=0.50, the FER regime is second best only for CB style B (where only GDP
matters). And for higher values of �, the FER regime is second best for CB styles
A, B, E, and F. Another interesting feature is that the (absolute) losses are not
always strictly increasing with �. For example, under CB style B and regime
MER, the loss reaches a peak for �=0.30. For the same CB style but regimes FER
and PER, the loss does increase monotonously with �. But for CB style A, these
regimes reach a peak at �=0.70, while the MER regime has its loss increasing
monotonously throughout.

Table 16 : Stability ranges for individual non-policy parameters with
optimal policy under commitment, MER regime, and CB style C

Parameter Baseline value Stability range
�T piT 1.015 <0.8 - 1.07
� betta 0.99 <0.8 - 0.999999
�C sigmaC 1.5 0.01 - 50
�N sigmaN 0.5 0.01 - 50
aD a_D 0.86 0.35 - 0.99
� thetta 6 1.01 - 27
�C thettaC 1.5 0.01 - 0.99 and 1.01 - 50
bA bA 0.5 0.01 - 0.99
� alpha 0.66 0.01 - 0.91
"'D varepsvarphi_D 2 0.01 - 10000
"L varepsilon_L 1.02 0.3 - 100

D gammaD 0.5 0.01 - 50

Summing up, with or without price stickiness there is a gain from intervening
in the FX market in the sense that the CB can better stabilize its target variables.
The advantage is greater when the CB only cares about stabilization in�ation
and/or GDP (CB styles A, B, or C) and the degree of price stickiness is high
(around 0.70 in CB style A, and around 0.90 in CB style B).

Table 17 : CB losses with optimal policy under
commitment for di¤erent values of �

STYLE

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
A 78.2 144.1 131.3 78.7 149.5 134.9 82.9 182.0 157.2 93.8 295.1 234.1 125.8 432.6 437.5 168.1 230.9 249.3
B 50.0 74.7 64.7 52.8 75.4 65.6 74.3 97.7 89.0 73.3 139.6 141.8 57.4 163.5 179.8 60.6 193.5 218.4
C 148.4 211.3 194.8 154.9 218.9 201.9 186.8 279.5 256.6 211.3 432.9 399.1 172.2 490.3 480.1 183.1 520.9 520.4
D 162.1 242.8 221.8 169.0 250.0 228.6 202.9 309.7 282.4 238.9 462.7 425.0 219.4 516.6 504.6 235.9 545.7 543.6
E 198.2 211.3 204.0 205.4 218.9 211.7 256.3 279.5 268.4 373.3 432.9 412.9 416.3 490.3 496.2 447.6 520.9 536.6
F 225.2 242.8 231.1 232.4 250.0 238.5 282.8 309.7 294.3 398.7 462.7 439.0 439.9 516.6 520.9 470.7 545.7 559.8

A 1.84 1.68 1.90 1.71 2.19 1.90 3.15 2.50 3.44 3.48 1.37 1.48
B 1.49 1.29 1.43 1.24 1.31 1.20 1.90 1.93 2.85 3.13 3.19 3.60
C 1.42 1.31 1.41 1.30 1.50 1.37 2.05 1.89 2.85 2.79 2.84 2.84
D 1.50 1.37 1.48 1.35 1.53 1.39 1.94 1.78 2.35 2.30 2.31 2.30
E 1.07 1.03 1.07 1.03 1.09 1.05 1.16 1.11 1.18 1.19 1.16 1.20
F 1.08 1.03 1.08 1.03 1.10 1.04 1.16 1.10 1.17 1.18 1.16 1.19

RELATIVE LOSS

SENSITIVITY TO PRICE STICKINESS UNDER OPTIMAL POLICY UNDER COMMITMENT
LOSS

alpha=0.01 alpha=0.10 alpha=0.30 alpha=0.50 alpha=0.70 alpha=0.90
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4. Monetary and exchange rate policy and capital �ows in the SOE
We have seen that in general the CB can better achieve its goals when it uses two
policy rules instead of one. What aspects of the model explain this, and why the
di¤erences in losses can be so large, remain to be seen. I start by conjecturing the
gain in using two policy rules is related to the CB�s ability to in�uence, to a certain
extent, households�foreign debt ratio. The latter determines the endogenous risk
premium that foreign agents charge over the international interest rate, which is a
primary ingredient in determining the relation between the interest rate di¤erential
and the capital �ows in and out of the SOE (through the UIP equation). To get
some intuition as to why this may be so under simple policy rules, let us �rst take
the log-linear approximations of the UIP equation and the two simple policy rules
equations under the MER regime :

bit = Etb�t+1 +bi�t + b��t + "'D �bdt + bet � bYt� (80)bit = h0bit�1 + h1b�Ct + h2bYt + h3bet (81)b�t = k0b�t�1 + k1b�Ct + k2bYt + k3bet + k4 �brt + bet � bYt� : (82)

Leading the third equation, subtracting the resulting equation from the second,
and using the �rst, gives the following equation:

bi�t + b��t + "'D �bdt + bet � bYt� = �h0bit�1 � k0b�t�+ �h1b�Ct � k1Etb�Ct+1� (83)

+
�
h2bYt � k2EtbYt+1�+ (h3bet � k3Etbet+1)� k4 �Etbrt+1 + Etbet+1 � EtbYt+1� :

On the l.h.s. is the log-linear deviation (from the NSS) of the risk/liquidity pre-
mium in the UIP (both the exogenous and endogenous parts). On the r.h.s. is a
complex term that exclusively depends on the log-linear deviations of the variables
the CB uses for its simple policy rules and the exogenous coe¢ cients in the simple
policy rules. Changes in the coe¢ cients on the CB policy rules can thus modify
a crucial relation between the (deviations in the) present and next (or preced-
ing, in the case of the interest rate) period endogenous variables whose deviations
the CB responds to and the deviation in the households�foreign debt ratio. The
policy coe¢ cients thus have an important role in determining what households�
foreign debt is in each period, given the values of the international interest rate
and risk/liquidity premium (bi�t + b��t ), both exogenous. For example, when one of
the latter is shocked, the policy coe¢ cients help in determining the e¤ects on the
households�foreign debt and, hence, international capital �ows. The constraints
that the respective �corner�regimes impose (the constancy of one of the potential
CB instruments: either bt = b; 8t; or rt = r; 8t, each replacing one of the simple
policy rules), imply that the CB has less leeway in a¤ecting international capital
�ows in the direction that helps it stabilize the economy according to its preferences
(or style).
Under the FER regime, in which (82) is replaced by brt = 0, instead of (83) we

have:

bi�t + b��t + "'D �bdt + bet � bYt� = h0bit�1 + h1b�Ct + h2bYt + h3bet � Etb�t+1
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and under the PER regime, in which (81) is replaced by bbt = 0, we have:bi�t + b��t + "'D �bdt + bet � bYt� = bit � k0b�t � Et hk1b�Ct+1 + k2bYt+1 + k3bet+1
+k4

�brt+1 + bet+1 � bYt+1�i :
In both of these corner cases, the CB a¤ects the foreign debt ratio through its
interest rate or exchange rate policy, respectively. It therefore also a¤ects the the
endogenous part of the risk/liquidity premium, and hence the (domestic) foreign
currency interest rate that impinges on the economy. Note that in the particular
PER regime in which there is no feedback, the r.h.s. of the last equation is simplybit� k0b�t, and in the �xed exchange rate policy it reduces to bit. The �exibility that
the CB achieves by using two simultaneous policy rules generates gains that, at
least for the most usual CB styles, can be substantial. Such gains have been mea-
sured above, in the context of this particular model, as the reductions in expected
loss obtained from using the MER regime instead of any of the corner regimes.
Although this argument is more clearly valid in the case of optimal simple rules,
in which the optimal coe¢ cients in the policy rules are obtained, given a CB style,
through a search in the parameter space of the simple policy rules, it would seem
to be also valid for the Ramsey case, since the additional constraints (either bt = b;
8t; or rt = r; 8t) which the corner regimes impose also imply less leeway for CB
optimal action.
To see if this conjecture can be validated (or refuted) I now use the optimal

policy under commitment framework to study the sensitivity of the expected in-
tertemporal loss to the elasticity of 'D (ed=Y ), i.e., "

'
D, for each CB style and

regime. This elasticity measures how much changes in the foreign debt ratio im-
pact on the domestic interest rate through the arbitrage relation given by the UIP.
(114) in Appendix 1 shows that it is linearly related to the elasticity of foreign
investor�s risk premium function. Table 18 shows that, as conjectured, "'D is ex-
tremely relevant in the determination of the relative excess loss which the two
corner regimes generate. For each CB style, 1) the corner regimes imply higher
losses than the MER regime; 2) the lower is "'D, the lower is the excess loss which the
corner regimes imply, and the losses are practically the same for all three regimes
when the elasticity is very low ("'D = 0:01), at least for styles A-D, and also style
E in the FER regime; 3) when 'D

�

D
�
is unit elastic or more, the losses under

the corner regimes are more than twice as high as in the MER regime under styles
A-D; 4) the e¤ect of changes in the elasticity on the expected loss is dramatically
di¤erent for the two corner regimes in comparison to the MER regime. While in
the corner regimes the loss is monotonously decreasing with "'D, the expected loss
is monotonously increasing in the MER regime for CB styles B-D, has a maximum
at "'D = 0:5 for style A and a maximum at "'D = 1 for styles E and F.
This exercise con�rms the conjecture that the ability of the CB to better a¤ect

household indebtedness behavior in order to get nearer to its objectives is consid-
erably greater under the MER regime, at least for the most usual CB styles. On
the other hand, there is a much smaller increase in the CB�s ability to achieve
its objectives through a MER regime when a desired ratio of IRs is an important
determinant of CB preferences. In such cases (styles E and F), the excess loss for
the corner regimes is in the 17%-18% range when "'D = 2.
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Table 18 : CB losses with optimal policy under
commitment for di¤erent values of "'D

STYLE

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
A 115.7 450.9 403.1 122.0 312.3 267.8 130.9 201.4 189.2 129.8 133.5 132.8 124.2 125.1 124.9 116.5 116.6 116.6
B 59.0 159.7 173.8 67.1 143.5 154.0 83.4 134.9 142.5 120.9 128.0 131.2 124.9 127.2 129.5 126.8 127.0 128.1
C 179.6 492.8 476.7 199.3 465.6 455.5 244.5 440.0 435.9 381.0 410.3 410.1 396.2 404.9 405.0 398.7 399.1 399.2
D 224.5 519.9 501.7 237.1 489.9 478.1 270.9 460.8 455.8 393.8 425.6 425.2 409.1 419.0 419.0 411.3 411.9 412.0
E 417.6 492.8 492.2 439.3 465.6 470.3 432.8 440.0 449.2 409.9 410.3 420.6 404.9 404.9 414.8 399.1 399.1 408.1
F 441.5 519.9 517.4 461.8 489.9 493.1 453.1 460.8 469.3 425.2 425.6 435.8 418.9 419.0 428.8 411.9 419.0 420.7

A 3.897 3.483 2.560 2.196 1.539 1.446 1.028 1.023 1.007 1.006 1.000 1.001
B 2.708 2.946 2.140 2.297 1.617 1.708 1.059 1.085 1.019 1.036 1.001 1.010
C 2.744 2.655 2.336 2.286 1.799 1.783 1.077 1.076 1.022 1.022 1.001 1.001
D 2.316 2.235 2.066 2.017 1.701 1.682 1.081 1.080 1.024 1.024 1.001 1.002
E 1.180 1.179 1.060 1.071 1.017 1.038 1.001 1.026 1.000 1.025 1.000 1.022
F 1.177 1.172 1.061 1.068 1.017 1.036 1.001 1.025 1.000 1.024 1.017 1.021

RELATIVE LOSS

SENSITIVITY OF LOSS TO ELASTICITY OF UIP UNDER OPTIMAL POLICY UNDER COMMITMENT
LOSS

varepsvarphiD=2; varepsvarphiD=1; varepsvarphiD=0.5; varepsvarphiD=0.1; varepsvarphiD=0.05; varepsvarphiD=0.01;

For additional con�rmation of my conjecture I also studied the sensitivity of the
expected loss to the standard deviation of the RW risk/liquidity shock (��

�
). The

results can be seen in Table 19. For a range of values of ��
�
that go from 0.01 to 0.8,

I calculated the expected discounted intertemporal loss for the three alternative
regimes and six alternative CB styles. As expected, the losses are monotonously
increasing in ��

�
. But so are the excess losses of the two corner regimes under

styles A-D and in the FER regime for all styles. The case of the excess loss in the
PER regime is radically di¤erent under styles E and F: the excess loss is decreasing
with ��

�
. The excess losses under styles A-D are all more than 400% (higher in

the corner regimes than in the MER regime) when the standard deviation is high
(��

�
= 0:8). Also, for standard deviations greater or equal to 0.1, the PER regime

is second best (shown in italics and red in the �relative loss�section) for all styles.
The FER regime is second best only for style B and ��

� � 0:05 and for styles B,
E and F and ��

�
= 0:01.

Table 19 : CB losses with optimal policy under
commitment for di¤erent values of ��

�

STYLE

MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER MER FER PER
A 491.6 6528.0 4612.9 261.7 2810.3 2037.5 167.3 1285.0 980.9 120.1 522.4 452.6 115.7 450.9 403.1 114.3 428.1 387.2
B 491.6 5446.0 3596.3 226.9 2212.0 1502.5 118.4 885.3 643.5 64.1 221.9 214.0 59.0 159.7 173.8 57.4 139.8 160.9
C 708.3 8285.6 5157.2 384.8 3518.2 2293.9 252.1 1562.4 1119.1 185.8 584.4 531.8 179.6 492.8 476.7 177.6 463.4 459.1
D 1240.3 10083.7 6674.9 618.8 4232.9 2898.4 363.9 1832.6 1349.0 236.4 632.4 574.4 224.5 519.9 501.7 220.7 483.9 478.5
E 5950.1 8285.6 6191.9 2565.5 3518.2 2705.1 1176.9 1562.4 1274.5 482.7 584.4 559.3 417.6 492.8 492.2 396.7 463.4 470.8
F 7438.6 10083.7 7716.8 3158.0 4232.9 3312.5 1401.9 1832.6 1505.6 523.8 632.4 602.1 441.5 519.9 517.4 415.2 483.9 490.3

A 13.279 9.383 10.740 7.787 7.681 5.863 4.349 3.767 3.897 3.483 3.745 3.388
B 11.079 7.316 9.748 6.621 7.480 5.437 3.463 3.340 2.708 2.946 2.438 2.805
C 11.698 7.281 9.142 5.961 6.196 4.438 3.146 2.862 2.744 2.655 2.610 2.585
D 8.130 5.382 6.840 4.683 5.036 3.707 2.675 2.429 2.316 2.235 2.193 2.168
E 1.393 1.041 1.371 1.054 1.327 1.083 1.211 1.159 1.180 1.179 1.168 1.187
F 1.356 1.037 1.340 1.049 1.307 1.074 1.207 1.149 1.177 1.172 1.165 1.181

SENSITIVITY OF LOSS TO ST.DEV. OF EXOGENOUS RISK/LIQ. SHOCK UNDER OPTIMAL POLICY UNDER COMMITMENT
LOSS

sterr(eps_phiStar)=0.8; sterr(eps_phiStar)=0.5; sterr(eps_phiStar)=0.3; sterr(eps_phiStar)=0.1; sterr(eps_phiStar)=0.05; sterr(eps_phiStar)=0.01;

RELATIVE LOSS

Finally, I illustrate the advantage of the MER regime by showing some of the
IRFs corresponding to a positive shock to �� (i.e., an adverse liquidity/risk shock)
in the case of optimal simple policy rules and CB style A (in which only stabilizing
in�ation matters). The three graphs below show IRFs for each of the three policy
regimes when the CB uses the optimal simple rules found in Table 10 for style A.
Notice that under the MER regime the optimal policy achieves a signi�cantly

smaller volatility in in�ation, the only target variable in this CB style, than in any
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of the �corner�regimes as a response to the shock.24 The volatility of consumption
and output are also signi�cantly lower in the MER regime, even though GDP is not
a target variable.25 The same can be said of the real interest rate, which increases
much less in the MER regime. Finally, optimal policy makes the debt ratio, and
hence the endogenous risk premium, fall in all three regimes. Also, the fall in the
foreign debt ratio (d_ratio), and hence in the endogenous risk premium, is much
greater in the MER regime, resulting in a much smaller increase in the domestic
nominal and real interest rate.

Figure 1 : lRFs for a positive shock to �� under optimal simple rules,
MER, and style A
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24Notice that this is only the dynamic response to a single shock (a deterministic exercise),
which is much simpler than the exercises above in which the full set of shocks (and their variances)
were considered (a stochastic exercise).
25The expansionary e¤ect on output is certainly not realistic. It is due to the fact that in

this simple model the e¤ect of the RER on exports is contemporaneous instead of lagged (as in
the more complicated model in Escudé (2009). Under the calibrations used, the expansionary
e¤ect of the adverse shock on exports more than compensates for the contractionary e¤ect on
consumption.
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Figure 2 : lRFs for a positive shock to �� under optimal simple rules,
FER, and style A
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Figure 3 : lRFs for a positive shock to �� under optimal simple rules,
PER, and style A
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5. Conclusion
This paper tries to bridge the gap between the fact that many central banks system-
atically intervene both in the domestic bond market (trying to impose a nominal
interest rate and often indirectly trying to approach an in�ation target) and in
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the foreign exchange market, and the absence of any generally accepted model for
the representation and analysis of this practice. The paper builds a model that
can represent a policy framework in which the CB can simultaneously intervene
in the foreign exchange and bond markets, varying its outstanding bond liabilities
and reserve assets in order to achieve two operational targets: one for the interest
rate and another for the rate of nominal depreciation. For this, the DSGE model
includes �nancial variables and institutional practices (�nuts and bolts�of central
banking) that are left out of conventional modeling in which only the extreme
policy regimes of a pure �oat or a pure peg are considered, but cannot be left
out when trying build a more general model. The resulting model has a core that
is little more than the typical DSGE workhorse of the profession, but extends it
in directions which allow for a richer policy framework. The model parameters
and steady state values of endogenous variables are calibrated, and the model is
implemented in Dynare.

Three alternative policy regimes are considered: the general, two rules regime
(denominated Managed Exchange Rate regime), and the two �corner�regimes of
Floating Exchange Rate and Pegged Exchange Rate (both of which use a single
simple policy rule or a single control variable). The alternative policy regimes are
studied under simple policy rules, optimal simple policy rules (where the coe¢ cients
are obtained by minimizing a linear combination of the variances of the target
variables), and optimal policy in a linear-quadratic optimal control framework
under commitment. First there is a study of the e¤ects of moving individual
coe¢ cients of the simple policy rules on the standard deviations of the typical
target variables under the MER regime. Then the minimum losses are obtained
in the two optimal policy frameworks for a wide range of alternative ad-hoc CB
preferences and the three alternative policy regimes. It is shown that the use of
two policy rules (or control variables) systematically outperforms any of the corner
regimes. For all central bank styles usually considered (that seek low variability of
in�ation and/or output) substantially better results are achieved when two control
variables are used. The reason for this outperformance is shown to derive from
the added leverage the CB obtains in exploiting capital �ows through its in�uence
on the risk premium function in the UIP equation. By using its interventions to
obtain operational targets for both the domestic interest rate and the (actual and
expected) rate of nominal depreciation, the CB has greater in�uence on the foreign
debt ratio that determines (endogenous part of) the risk premium in the UIP
equation. The CB can get a lower loss when it intervenes in both markets instead
of one by manipulating the factor that determines private foreign indebtedness.

We conclude that a policy of systematically intervening in the foreign exchange
market through a feedback rule is a valuable complement to any interest rate policy
rule framework, and that there are good reasons for defending a managed exchange
rate regime as the baseline in any SOE modeling framework. Analogous results
are expected in a context of economies that are not small, as long as there are
endogenous risk premiums that depend on debt levels. In that case, however, a
policy game must be considered, which is left for future research. The Appendixes
detail the calibrations used and show some of the IRFs generated by Dynare.
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Appendix 1. Calibration of parameters and derivation of the correspond-
ing non-stochastic steady state
In this Appendix I obtain the calibrated values for the model�s parameters and
the corresponding non-stochastic steady state (NSS) values of the model variables.
There are always many ways of doing this. I calibrate some of the parameters,
some ratios and some NSS values of endogenous variables, and obtain the rest
sequentially from the static nonlinear equations so that a computer code can follow
the same steps if one changes some of the calibrated values or estimates some of
them from the data.

A.1.1. Calibration of the components of the external terms of trade
The terms of trade is a particularly important variable for any SOE. Hence, I made
a preliminary investigation of the data pertaining to Argentina. To confront (77)
with the data, notice that the �rst two of these equations can be written in terms
of the (logs of) price indexes:

� logP �Xt = ��
�X
� logP �Xt�1 +

�
1� ���X

�
log ��X + ���X

�
logP �Xt�1 � logP �Nt�1

�
+��

�X
"�

�X

t ;

� logP �Nt = ��
�
� logP �Nt�1 + (1� ���) log ��N + ���

�
logP �Xt�1 � logP �Nt�1

�
+��

�
"�

�

t :

A quick estimation for cointegration of Argentina�s trade price indexes during
1993Q3-2009Q2 gave the results in the table below (the notation should be ob-
vious). Although empirically I was not able to impose a coe¢ cient of negative
one for the second coe¢ cient in the cointegrating relation, I did impose it in the
calibration to be consistent with the de�nition of the terms of trade. I also ignored
the small deterministic trend in the cointegrating relation, the two time dummies
(�rst and fourth quarters of 2008) that made the residuals normal, homoscedastic
and devoid of serial correlation, as well as the non-signi�cant coe¢ cients. Hence,
I use the following speci�cation in the model:

� logP �Xt = 0:41� logP �Xt�1 + (1� 0:41) log ��X � 0:25
�
logP �Xt�1 � logP �Nt�1

�
+0:0424"�

��

t ;

� logP �Nt = 0:20� logP �Nt�1 + (1� 0:20) log ��N + 0:18
�
logP �Xt�1 � logP �Nt�1

�
+0:18� logP �Xt�1 + 0:0295"

��

t ;

where, using the notation in (77), ��� = 1, and �
��XN = 0:18 is added for the e¤ect

of � logP �Xt�1 on � logP
�N
t (which did not appear in the original speci�cation).

Hence, the �nal speci�cation of the XTT block (77) is:

��Xt =
�
��Xt�1

�0:41 �
��X

�1�0:41 �
p�t�1

��0:25
exp

�
0:0424"�

��

t

�
;

��t =
�
��t�1

�0:20
(��)1�0:20

�
p�t�1

�0:18 �
��Xt

�0:18
exp

�
0:0295"�

�

t

�
;

p�t = p�t�1
��Xt
��t
:
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 Vector Error Correction Estimates
 Sample (adjusted): 1993Q3 2009Q2
 Included observations: 64 after adjustments
 Standard errors in ( ) & t­statistics in [ ]

Cointegrating Eq: CointEq1

LPSTARXLEVEL(­1) 1.0000

LPSTARNLEVEL(­1) ­1.4924
0.1263

[­11.8125]

@TREND(93Q1) ­0.0044

C 2.3074

Error Correction: D(LPSTARXLEVEL) D(LPSTARNLEVEL)

CointEq1 ­0.25543 0.18115
0.09767 0.06597

[­2.61520] [ 2.74597]

D(LPSTARXLEVEL(­1)) 0.40776 0.17699
0.13273 0.08965

[ 3.07203] [ 1.97414]

D(LPSTARNLEVEL(­1)) 0.15719 0.20080
0.17834 0.12046

[ 0.88142] [ 1.66697]

C ­0.00273 ­0.00498
0.00838 0.00566

[­0.32536] [­0.87938]

@TREND(93Q1) 0.00021 0.00018
0.00023 0.00015

[ 0.95374] [ 1.17769]

D081 0.08543 0.00287
0.03638 0.02457

[ 2.34827] [ 0.11686]

D084 ­0.15245 ­0.12326
0.03296 0.02226

[­4.62518] [­5.53617]

 R­squared 0.48888 0.52026
 Adj. R­squared 0.43508 0.46976
 Sum sq. resids 0.05778 0.02636
 S.E. equation 0.03184 0.02151
 F­statistic 9.08656 10.30235
 Log likelihood 133.50707 158.62000
 Akaike AIC ­3.95335 ­4.73813
 Schwarz SC ­3.71722 ­4.50200
 Mean dependent 0.00581 0.00029
 S.D. dependent 0.04236 0.02953

 Determinant resid covariance (dof adj.) 0.00000045
 Determinant resid covariance 0.00000035
 Log likelihood 293.76131
 Akaike information criterion ­8.68004
 Schwarz criterion ­8.14032

A.1.2. The NSS relations between parameters and endogenous variables
Eliminating time indexes from the model equations and simplifying gives a set
of nonlinear equations that involve both the parameters and NSS values of the
endogenous variables. I assume that in the NSS � = 1. I also use the target
value for the CB reserves ratio 
R = er=Y , the NSS household foreign debt ratio

D = ed=Y and money ratio 
M = m=

�
pCC

�
: In some cases I divided the equation

through by GDP.
Consumption:

1 + i

�C
=
1

�
(84)
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Risk-adjusted uncovered interest parity:

1 + i = (1 + i�)��'D
�

D
�
� (85)

Phillips in�ation equations:

� =
Q=
�
pCC�

C
�

1� �����1 (86)

	 =
�

� � 1mc
Q=
�
pCC�

C
�

1� ���� (87)

�

	
=

�
1� ����1
1� �

� 1
��1

= ep (�)�1 (88)

Dynamics of price dispersion:

� =

�
1� �
1� ���

��
1� ����1
1� �

� �
��1

: (89)

Exports:
X = �X (ep

�)bX Y (90)

Trade Balance:

TB
e

Y
=
1

aD

��
pCt
�1��C X

Y
� (1� aD) e1��

C

�
(91)

Current Account:

CA
e

Y
=

�
1 + i�

��
� 1
�

R �

�
1 + i�

��
���D

�

D
�
� 1
�

D + TB

e

Y
(92)

Balance of Payments:
CA = 0 (93)

Real marginal cost:
mc = w (94)

Labor market clearing:

w = �NpCC�
C

'M
�

M
�
N�N (95)

Hours worked:
N = Q� (96)

Domestic goods market clearing:

Q

Y
= 1�

�
1� bA

� X
Y

(97)

GDP:

1 = aD
�M
�

M
�
G

(pC)1��
C

pCC

Y
+
X

Y
(98)
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Consumption relative price:

pC =
�
aD + (1� aD) e1��

C
� 1

1��C (99)

Money market balance:
m = L (1 + i) pCC; (100)

CB balance sheet:
b

Y
= 
R � 
M p

CC

Y
(101)

Consumption in�ation:
�C = � (102)

Real Exchange Rate:
��� = � (103)

External terms of trade:
��X = �� (104)

Tax collection:
tax = GpCC � qf

Quasi-�scal surplus:

qf = (1 + i� � 1=�) er
��
� ((1 + i)� 1) b

�

Interest rate feedback rule:

1 =

�
�C

�T

�h1
(105)

Nominal depreciation feedback rule:

1 =

�
�C

�T

�k1 �er=Y

R

�k4
(106)

Exports in�ation shock
1 = (p�)���� (107)

Imported in�ation shock

1 = (p�)���
�
��X

����XN
: (108)

I now show one way in which the EENE values of the model�s variables and the
calibrated values of parameters can be obtained sequentially.
(105) implies �C = �T , since h1 6= 0 is assumed. Inserting this in (102) yields

� = �T . Also, (107) implies that the XTT is p� = 1, and hence (108) implies that
��X = 1, and (104) that �� = 1. Therefore, (103) implies � = �T . Summing up,
we have:

� = � = �C = �T ; and �� = ��X = p� = 1:

Hence, (84) gives the nominal interest rate: 1+ i = �T=� and (106) yields er=Y =

R, since it is assumed that k4 6= 0, which implies that the CB�s target ratio of
international reserves to GDP is attained in the NSS.
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I assume � = 0:99. For illustrative purposes I use as Argentina�s NSS GDP its
2010 level (at 2010 prices and in trillions of pesos): Y = 1:443. The gross exogenous
risk/liquidity premium for households and the RW gross interest rate are assumed
to be �� = 1:0050:25 and 1 + i� = 1:030:25, respectively. Also, the household ratios
are 
D � ed=Y = 0:5, 
M � m=pCC = 0:095522, and Government to household
consumption ratio is assumed to be G = 1:19.
The home bias parameter (or share of domestic goods) in household consump-

tion is calibrated to aD = 0:86. The constant relative risk aversion for labor (which
is also the inverse of the elasticity of labor supply with respect to the real wage)
and consumption are: �N = 0:5 and �C = 1:5, respectively. Finally, I assume that
the elasticity of substitution between varieties of domestic goods is � = 6 and the
elasticity of substitution between the bundles of domestic and imported goods is
�C = 1:5. Assuming that the exogenous parameter for exports demand is bA = 0:5,

yields bX �
�
1� bA

��1
= 2 and �X �

�
bA
�bAbX

= 0:5.
I now focus on the NSS values of the remaining endogenous variables and pa-

rameters.

A.1.2.1 The endogenous risk premium

Using (84), (102), and (103) in the UIP equation (85) gives the household foreign
debt to GDP ratio as a function of parameters which I have already calibrated:


D � ed

Y
= '�1D

�
1=�

�� (1 + i�) =��

�
= '�1D

�
1

��� (1 + i�)

�
:

However, calculating this requires the values of the exogenous parameters �1 and
�2 which help de�ne the function 'D. I now seek to calibrate them in terms of the
more intuitive elasticity of the risk premium function in the UIP (which plays a
critical role in the present research). First, notice that the elasticity "D of �D is

"D
�

Dt
�
� �2


D
t

1� �2
Dt
: (109)

�D and 'D are related to "D by (see (67) and (69)):

�D
�

Dt
�
= �1

�
1 + "D(


D
t )
�
; (110)

'D
�

Dt
�
= �1

�
1 + "D(


D
t )
�2
:

Hence, if the NSS values of "D and 
D are calibrated, (109) gives the value of �2:

�2 =
1


D
�
1
"D
+ 1
� : (111)

Also, using (110), (66), and (84) in (85) yields:

'D
�

D
�
=

1 + i

(1 + i�)���
� 1 = 1

� (1 + i�)��
� 1 = �1 (1 + "D)2 ; (112)
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which gives the value of �1:

�1 =
1

(1 + "D)
2

�
1

� (1 + i�)��
� 1
�
=
�
1� �2
D

�2� 1

� (1 + i�)��
� 1
�
; (113)

where the second equality is derived from (111).
However, because of the critical role of the derived function 'D in the UIP

equation (71) it is perhaps more intuitive in calibrations to start with the value of
the elasticity of 'D, which I denote as "

'
D, along with 


D, and derive the value of
"D. It is straightforward to prove that "

'
D and "D are related by:

"'D = "D
2


D
'D

1 + 'D
= "D

2


D
[1� � (1 + i�)��] ; (114)

where the second equality uses (112). Hence, using (111), (113) and (109):

�2 =
1

2
"'D
[1� � (1 + i�)��] + 
D

�1 =
�
1� �2
D

�2� 1

� (1 + i�)��
� 1
�
:

If, say, "'D = 2 then

�2 =
1

(1� 0:99 (1:030:25) 1:0050:25) + 0:5 = 1: 994 4

�1 = (1� 1: 994 4 � 0:5)2
�

1

0:99 (1:030:25) 1:0050:25
� 1
�
= 1: 109 2� 10�8

and hence:

�D =
1: 1092� 10�8
1� 1:9944 � 0:5 = 3:9614� 10

�6

'D =
1:1092� 10�8

(1� 1:994 4 � 0:5)2
= 1:4148� 10�3:

A.1.2.2 The balance of payments

Using the previous calibrations, (93) and (92) give the trade balance to GDP ratio
necessary to sustain net interest payments abroad:

TB
e

Y
=

�
1 + i�

��
���D � 1

�

D �

�
1 + i�

��
� 1
�

R�

1:030:25

1
1:0050:25 (1:0000039368)� 1

�
0:5�

�
1:030:25

1
� 1
�
0:13

= 0:00337476
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Then, using (91), (90), and (99), one can obtain the RER necessary to generate
this trade surplus:

�X (ep
�)bX

h
aD + (1� aD) e1��

C
i
� (1� aD) e1��

C

= aDTB
e

Y
0:5e2

�
0:86 + (1� 0:86) e1�1:5

�
� (1� 0:86) e1�1:5 = 0:86 (0:00337476)

e = 0:595055

and hence the exports to GDP ratio and pC :

X

Y
= �X (ep

�)bX = 0:5 (0:595055)2 = 0:177 045;

pC =
�
0:86 + (1� 0:86) (0:595055)1�1:5

� 1
1�1:5 = 0:921915

A.1.2.3 The transactions cost function and money demand

The elasticity of L (1 + i) (see (70)) can be shown to satisfy the following relation:

"L
�

M
�
=

1

(�3 + 1) i

�
1 +

1

�2

M

�
; (115)

from which we obtain:

�2 =
1


M
1

(�3 + 1) "Li� 1
:

Also, reshu­ ing (70) gives:

�1 =

�
1 + �2


M
��3+1

�2�3

�
1� 1

1 + i

�
:

So using the last two expressions in (68) to eliminate �1 and �2 gives:

�M
�

M
�
=

�
1 +

1

�3

��
1� 1

1 + i

�
i"L
�

M
�

M : (116)

Since transaction costs are dependent on the in�ation rate (through the nominal
interest rate) I cannot calibrate the three parameters �1; �2; and �3 without �rst
calibrating the in�ation rate. I assume that the target in�ation rate is �T = 1:015.
Hence, the nominal interest rate is given by (84): 1+i = 1:015=0:99 = 1:0253: Next,
calibrate the value of the interest elasticity of money demand to, say, "L = 1:02. We
also have 
M = 0:095522. Notice that to have �2 positive, �3 must be su¢ ciently
high (and hence �M su¢ ciently low):26

26Although this level of transaction costs may seem unrealistically low, we really do not care
much about transaction costs per se but only their e¤ect on money demand. To have more
realistic levels of transaction costs we would need a di¤erent transaction costs function. As long
as we are confortable with the resulting interest elasticity of money demand and the assumed
stock of money, we can hold on to the present function.
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�3 >
1

"Li
� 1 = 1

1:02 (1:015=0:99� 1) � 1 = 37:82352941

�M <

�
1 +

1

37:82352941

��
1� 1

1:015=0:99

��
1:015

0:99
� 1
�
0:095522 � 1:02

= 0:00006220357:

If, say, �3 = 160, then:

�2 =
1

0:09553

1

(160 + 1) 1:02
�
1:015
0:99

� 1
�
� 1

= 3:32635

�1 =
(1 + 3:32635 � 0:095522)160+1

3:32635 � 160

�
1� 0:99

1:015

�
= 9:07697� 1014:

Hence:

�M =
�1

(1 + �2

M)�3

=
9:07697� 1014

(1 + 3:32635 � 0:095522)160
= 6:0984� 10�5

'M = �M

�
1 + �3

�2

M

1 + �2

M

�
= 6:0984� 10�5

�
1 + 160

3:32635 � 0:095522
1 + 3:32635 � 0:095522

�
= 2:41374� 10�3:

Finally, using (98), the consumption to GDP ratio is:

pCC

Y
=

�
pC
�1��C

aD�M (
M)G

h
1� �X (ep�)b

X
i

=
(0:921915)1�1:5

0:86 � 1:00006098 � 1:19 (1� 0:177 045) = 0:837457:

Hence, C and Q can be obtained:

C =
pCC

Y

Y

pC
= 0:837457 � 1:443

0:921915
= 1: 310 8

Q =

�
1�

�
1� bA

� X
Y

�
Y = [1� (1� 0:5) 0:177 045] 1:443 = 1: 315 26:

A.1.2.4 In�ation, price dispersion and marginal cost

(89) shows NSS price dispersion as a function of the NSS in�ation rate. It is easy
to check that this function has a local minimum at � = 1, where there is price
stability and no price dispersion (� = 1). Given the above calibrations, the NSS
value of price dispersion is:

� =
1� 0:66

1� 0:66 (1:015)6

 
1� 0:66 (1:015)6�1

1� 0:66

! 6
6�1

= 1:0051:
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Hence, (97) gives the value of hours worked:

N = Q� = 1:31526 � 1:0051 = 1:32197;

(86) gives the value of �:

� =
Q=
�
pCC�

C
�

1� �����1 =
1: 315 26= (0:921915 � 1: 310 81:5)
1� 0:99 � 0:66 � 1:0156�1 = 3:210508;

(88) gives the value of 	:

	 = �

�
1� �

1� ����1

� 1
��1

= 3:210508

�
1� 0:66

1� 0:66 � 1:0156�1

� 1
6�1

= 3:31659;

and (87) gives the value of mc:

mc = 	

,0@ �

� � 1
Q=
�
pCC�

C
�

1� ����

1A
= 3: 316 59

��
6

6� 1
1: 315 26= (0:921915 � 1: 310 81:5)

1� 0:99 � 0:66 � 1:0156

�
= 0:830 17:

Finally, (94) and (95) give the value of �N :

�N = mc=
�
pCC�

C

'MN
�N
�

= 0:83017
��
0:921915 � 1:31081:51:0024137 � 1:321970:5

�
= 0:520612;

and the NSS value of period aggregate utility is:

Utility =
1: 31081�1:5

1� 1:5 � 0:5206121:32197
1+0:5

1 + 0:5
= �2:2744:

The fact that it is negative is irrelevant, since utility has only ordinal, not cardinal,
signi�cance.
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Appendix 2. Impulse Response Functions for Optimal Policies in the
MER regime under CB styles A, B, and C
All shocks in the IRFs below are positive and of 1 standard deviation. Shock
variables are in logs in the nonlinear model.

A.2.1 Optimal Simple Policy Rules
A.2.1.1 Central Bank style A

!� = 100; !Y = 1; !e = 1; !r = 1; !�i = 50; !�� = 50

h0 h1 h2 h3 k0 k1 k2 k3 k4
0:33 1:26 0:02 0:12 �0:03 �0:07 �0:08 �0:43 �0:08
Response to a positive shock to domestic sector productivity: �
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Response to a positive shock to government expenditures: G
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Response to a positive shock to the RW interest rate: i�
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Response to a positive shock to the SOE�s exogenous risk/liquidity premium: ��
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Response to a positive shock to imports in�ation: ��
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Response to a positive shock to exports in�ation: ��X
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A.2.1.2 Central Bank style B

!� = 1; !Y = 100; !e = 1; !r = 1; !�i = 50; !�� = 50

h0 h1 h2 h3 k0 k1 k2 k3 k4
1:86 �1:01 4:34 �0:21 3:08 �3:92 �2:28 1:18 0:40
Response to a positive shock to domestic sector productivity: �
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Response to a positive shock to government expenditures: G
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Response to a positive shock to the RW interest rate: i�
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Response to a positive shock to the SOE�s exogenous risk/liquidity premium: ��
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Response to a positive shock to imports in�ation: ��
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Response to a positive shock to exports in�ation: ��X
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A.2.1.3 Central Bank style C

!� = 100; !Y = 100; !e = 1; !r = 1; !�i = 50; !�� = 50

h0 h1 h2 h3 k0 k1 k2 k3 k4
1:63 1:92 1:43 0:82 0:44 �1:31 �0:12 �0:91 �0:06
Response to a positive shock to domestic sector productivity: �
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Response to a positive shock to government expenditures: G
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Response to a positive shock to the RW interest rate: i�
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Response to a positive shock to the SOE�s exogenous risk/liquidity premium: ��
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Response to a positive shock to imports in�ation: ��
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Response to a positive shock to exports in�ation: ��X
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A.2.2 Optimal policy under commitment
The IRFs below correspond to the speci�ed weights on the loss function:

A.2.2.1 Central Bank style A

!� = 100; !Y = 1; !e = 1; !r = 1; !�i = 50; !�� = 50:

Response to a positive shock to domestic sector productivity: �
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Response to a positive shock to government expenditures: G
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Response to a positive shock to the RW interest rate: i�

5 10 15 20
­5

0

5
x 10­4 piC

5 10 15 20
­2

0

2
x 10­4 DeltaP

5 10 15 20
­2

0

2
x 10­3 Y

5 10 15 20
­2

0

2
x 10­3 C

5 10 15 20
­5

0

5
x 10­4 real_ii

5 10 15 20
0

1

2
x 10­3 e

5 10 15 20
0

2

4
x 10­3 TB

5 10 15 20
0

1

2
x 10­3 X

5 10 15 20
­2

0

2
x 10­3 mc

5 10 15 20
­1

0

1
x 10­3 N

5 10 15 20
­5

0

5
x 10­4 ii

5 10 15 20
­1

0

1
x 10­3 delta

5 10 15 20
­5

0

5
x 10­3 b

5 10 15 20
­0.01

0

0.01
r

5 10 15 20
­0.01

­0.005

0
d

5 10 15 20
­2

0

2
x 10­4 m

5 10 15 20
­1

­0.5

0
x 10­3 Utility

5 10 15 20
0

5
x 10­3z_iStar



80

Response to a positive shock to the SOE�s exogenous risk/liquidity premium: ��
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Response to a positive shock to imports in�ation: ��
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Response to a positive shock to exports in�ation: ��X
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A.2.2.2 Central Bank style B

!� = 1; !Y = 100; !e = 1; !r = 1; !�i = 50; !�� = 50:

Response to a positive shock to domestic sector productivity: �
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Response to a positive shock to government expenditures: G
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Response to a positive shock to the RW interest rate: i�
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Response to a positive shock to the SOE�s exogenous risk/liquidity premium: ��
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Response to a positive shock to imports in�ation: ��
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Response to a positive shock to exports in�ation: ��X
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A.2.2.3 Central Bank style C

!� = 100; !Y = 100; !e = 1; !r = 1; !�i = 50; !�� = 50:

Response to a positive shock to domestic sector productivity: �
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Response to a positive shock to government expenditures: G
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Response to a positive shock to the RW interest rate: i�
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Response to a positive shock to the SOE�s exogenous risk/liquidity premium: ��

5 10 15 20
­5

0

5
x 10­3 piC

5 10 15 20
­2

0

2
x 10­3 DeltaP

5 10 15 20
­5

0

5
x 10­3 Y

5 10 15 20
­0.02

0

0.02
C

5 10 15 20
­5

0

5
x 10­3 real_ii

5 10 15 20
­0.01

0

0.01
e

5 10 15 20
­0.02

0

0.02
TB

5 10 15 20
­0.01

0

0.01
X

5 10 15 20
­0.02

0

0.02
mc

5 10 15 20
­0.01

0

0.01
N

5 10 15 20
­5

0

5
x 10­3 ii

5 10 15 20
­0.01

0

0.01
delta

5 10 15 20
­0.04

­0.02

0
b

5 10 15 20
­0.1

­0.05

0
r

5 10 15 20
­0.1

0

0.1
d

5 10 15 20
­1

­0.5

0
x 10­3 m

5 10 15 20
­0.01

­0.005

0
Utility

5 10 15 20
0

0.05

0.1
z_phiStar



93

Response to a positive shock to imports in�ation: ��

5 10 15 20
­0.01

0

0.01
piC

5 10 15 20
­1

0

1
x 10­3 DeltaP

5 10 15 20
­4

­2

0
x 10­4 Y

5 10 15 20
­5

0

5
x 10­3 C

5 10 15 20
­5

0

5
x 10­3 real_ii

5 10 15 20
­0.02

0

0.02
e

5 10 15 20
­0.01

0

0.01
TB

5 10 15 20
­5

0

5
x 10­3 X

5 10 15 20
­5

0

5
x 10­3 mc

5 10 15 20
­5

0

5
x 10­3 N

5 10 15 20
­2

0

2
x 10­3 ii

5 10 15 20
­0.01

0

0.01
delta

5 10 15 20
­0.02

0

0.02
b

5 10 15 20
­0.02

0

0.02
r

5 10 15 20
­0.02

0

0.02
d

5 10 15 20
­5

0

5
x 10­4 m

5 10 15 20
­5

0

5
x 10­3 Utility

5 10 15 20
­0.05

0

0.05
z_piStar



94

Response to a positive shock to exports in�ation: ��X
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